This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpsds.t | |- T = ( R Xs. S ) |
|
| xpsds.x | |- X = ( Base ` R ) |
||
| xpsds.y | |- Y = ( Base ` S ) |
||
| xpsds.1 | |- ( ph -> R e. V ) |
||
| xpsds.2 | |- ( ph -> S e. W ) |
||
| xpsds.p | |- P = ( dist ` T ) |
||
| xpsds.m | |- M = ( ( dist ` R ) |` ( X X. X ) ) |
||
| xpsds.n | |- N = ( ( dist ` S ) |` ( Y X. Y ) ) |
||
| xpsds.3 | |- ( ph -> M e. ( *Met ` X ) ) |
||
| xpsds.4 | |- ( ph -> N e. ( *Met ` Y ) ) |
||
| xpsds.a | |- ( ph -> A e. X ) |
||
| xpsds.b | |- ( ph -> B e. Y ) |
||
| xpsds.c | |- ( ph -> C e. X ) |
||
| xpsds.d | |- ( ph -> D e. Y ) |
||
| Assertion | xpsdsval | |- ( ph -> ( <. A , B >. P <. C , D >. ) = sup ( { ( A M C ) , ( B N D ) } , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsds.t | |- T = ( R Xs. S ) |
|
| 2 | xpsds.x | |- X = ( Base ` R ) |
|
| 3 | xpsds.y | |- Y = ( Base ` S ) |
|
| 4 | xpsds.1 | |- ( ph -> R e. V ) |
|
| 5 | xpsds.2 | |- ( ph -> S e. W ) |
|
| 6 | xpsds.p | |- P = ( dist ` T ) |
|
| 7 | xpsds.m | |- M = ( ( dist ` R ) |` ( X X. X ) ) |
|
| 8 | xpsds.n | |- N = ( ( dist ` S ) |` ( Y X. Y ) ) |
|
| 9 | xpsds.3 | |- ( ph -> M e. ( *Met ` X ) ) |
|
| 10 | xpsds.4 | |- ( ph -> N e. ( *Met ` Y ) ) |
|
| 11 | xpsds.a | |- ( ph -> A e. X ) |
|
| 12 | xpsds.b | |- ( ph -> B e. Y ) |
|
| 13 | xpsds.c | |- ( ph -> C e. X ) |
|
| 14 | xpsds.d | |- ( ph -> D e. Y ) |
|
| 15 | eqid | |- ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
| 16 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 17 | eqid | |- ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
|
| 18 | 1 2 3 4 5 15 16 17 | xpsval | |- ( ph -> T = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 19 | 1 2 3 4 5 15 16 17 | xpsrnbas | |- ( ph -> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 20 | 15 | xpsff1o2 | |- ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 21 | f1ocnv | |- ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) ) |
|
| 22 | 20 21 | mp1i | |- ( ph -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) ) |
| 23 | ovexd | |- ( ph -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. _V ) |
|
| 24 | eqid | |- ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |` ( ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) X. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) = ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |` ( ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) X. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) |
|
| 25 | 1 2 3 4 5 6 7 8 9 10 | xpsxmetlem | |- ( ph -> ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) e. ( *Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) |
| 26 | ssid | |- ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) C_ ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
| 27 | xmetres2 | |- ( ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) e. ( *Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) /\ ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) C_ ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) -> ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |` ( ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) X. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) e. ( *Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) |
|
| 28 | 25 26 27 | sylancl | |- ( ph -> ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |` ( ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) X. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) e. ( *Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) |
| 29 | df-ov | |- ( A ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) B ) = ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. A , B >. ) |
|
| 30 | 15 | xpsfval | |- ( ( A e. X /\ B e. Y ) -> ( A ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) B ) = { <. (/) , A >. , <. 1o , B >. } ) |
| 31 | 11 12 30 | syl2anc | |- ( ph -> ( A ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) B ) = { <. (/) , A >. , <. 1o , B >. } ) |
| 32 | 29 31 | eqtr3id | |- ( ph -> ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. A , B >. ) = { <. (/) , A >. , <. 1o , B >. } ) |
| 33 | 11 12 | opelxpd | |- ( ph -> <. A , B >. e. ( X X. Y ) ) |
| 34 | f1of | |- ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -> ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) --> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
|
| 35 | 20 34 | ax-mp | |- ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) --> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 36 | 35 | ffvelcdmi | |- ( <. A , B >. e. ( X X. Y ) -> ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. A , B >. ) e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
| 37 | 33 36 | syl | |- ( ph -> ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. A , B >. ) e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
| 38 | 32 37 | eqeltrrd | |- ( ph -> { <. (/) , A >. , <. 1o , B >. } e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
| 39 | df-ov | |- ( C ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) D ) = ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. C , D >. ) |
|
| 40 | 15 | xpsfval | |- ( ( C e. X /\ D e. Y ) -> ( C ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) D ) = { <. (/) , C >. , <. 1o , D >. } ) |
| 41 | 13 14 40 | syl2anc | |- ( ph -> ( C ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) D ) = { <. (/) , C >. , <. 1o , D >. } ) |
| 42 | 39 41 | eqtr3id | |- ( ph -> ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. C , D >. ) = { <. (/) , C >. , <. 1o , D >. } ) |
| 43 | 13 14 | opelxpd | |- ( ph -> <. C , D >. e. ( X X. Y ) ) |
| 44 | 35 | ffvelcdmi | |- ( <. C , D >. e. ( X X. Y ) -> ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. C , D >. ) e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
| 45 | 43 44 | syl | |- ( ph -> ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. C , D >. ) e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
| 46 | 42 45 | eqeltrrd | |- ( ph -> { <. (/) , C >. , <. 1o , D >. } e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
| 47 | 18 19 22 23 24 6 28 38 46 | imasdsf1o | |- ( ph -> ( ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , A >. , <. 1o , B >. } ) P ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , C >. , <. 1o , D >. } ) ) = ( { <. (/) , A >. , <. 1o , B >. } ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |` ( ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) X. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) { <. (/) , C >. , <. 1o , D >. } ) ) |
| 48 | 38 46 | ovresd | |- ( ph -> ( { <. (/) , A >. , <. 1o , B >. } ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |` ( ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) X. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) { <. (/) , C >. , <. 1o , D >. } ) = ( { <. (/) , A >. , <. 1o , B >. } ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) { <. (/) , C >. , <. 1o , D >. } ) ) |
| 49 | 47 48 | eqtrd | |- ( ph -> ( ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , A >. , <. 1o , B >. } ) P ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , C >. , <. 1o , D >. } ) ) = ( { <. (/) , A >. , <. 1o , B >. } ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) { <. (/) , C >. , <. 1o , D >. } ) ) |
| 50 | f1ocnvfv | |- ( ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) /\ <. A , B >. e. ( X X. Y ) ) -> ( ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. A , B >. ) = { <. (/) , A >. , <. 1o , B >. } -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , A >. , <. 1o , B >. } ) = <. A , B >. ) ) |
|
| 51 | 20 33 50 | sylancr | |- ( ph -> ( ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. A , B >. ) = { <. (/) , A >. , <. 1o , B >. } -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , A >. , <. 1o , B >. } ) = <. A , B >. ) ) |
| 52 | 32 51 | mpd | |- ( ph -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , A >. , <. 1o , B >. } ) = <. A , B >. ) |
| 53 | f1ocnvfv | |- ( ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) /\ <. C , D >. e. ( X X. Y ) ) -> ( ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. C , D >. ) = { <. (/) , C >. , <. 1o , D >. } -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , C >. , <. 1o , D >. } ) = <. C , D >. ) ) |
|
| 54 | 20 43 53 | sylancr | |- ( ph -> ( ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. C , D >. ) = { <. (/) , C >. , <. 1o , D >. } -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , C >. , <. 1o , D >. } ) = <. C , D >. ) ) |
| 55 | 42 54 | mpd | |- ( ph -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , C >. , <. 1o , D >. } ) = <. C , D >. ) |
| 56 | 52 55 | oveq12d | |- ( ph -> ( ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , A >. , <. 1o , B >. } ) P ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , C >. , <. 1o , D >. } ) ) = ( <. A , B >. P <. C , D >. ) ) |
| 57 | eqid | |- ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |
|
| 58 | fvexd | |- ( ph -> ( Scalar ` R ) e. _V ) |
|
| 59 | 2on | |- 2o e. On |
|
| 60 | 59 | a1i | |- ( ph -> 2o e. On ) |
| 61 | fnpr2o | |- ( ( R e. V /\ S e. W ) -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) |
|
| 62 | 4 5 61 | syl2anc | |- ( ph -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) |
| 63 | 38 19 | eleqtrd | |- ( ph -> { <. (/) , A >. , <. 1o , B >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 64 | 46 19 | eleqtrd | |- ( ph -> { <. (/) , C >. , <. 1o , D >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 65 | eqid | |- ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |
|
| 66 | 17 57 58 60 62 63 64 65 | prdsdsval | |- ( ph -> ( { <. (/) , A >. , <. 1o , B >. } ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) { <. (/) , C >. , <. 1o , D >. } ) = sup ( ( ran ( k e. 2o |-> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) u. { 0 } ) , RR* , < ) ) |
| 67 | df2o3 | |- 2o = { (/) , 1o } |
|
| 68 | 67 | rexeqi | |- ( E. k e. 2o x = ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) <-> E. k e. { (/) , 1o } x = ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) |
| 69 | 0ex | |- (/) e. _V |
|
| 70 | 1oex | |- 1o e. _V |
|
| 71 | 2fveq3 | |- ( k = (/) -> ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) ) |
|
| 72 | fveq2 | |- ( k = (/) -> ( { <. (/) , A >. , <. 1o , B >. } ` k ) = ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) ) |
|
| 73 | fveq2 | |- ( k = (/) -> ( { <. (/) , C >. , <. 1o , D >. } ` k ) = ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) ) |
|
| 74 | 71 72 73 | oveq123d | |- ( k = (/) -> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) = ( ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) ) ) |
| 75 | 74 | eqeq2d | |- ( k = (/) -> ( x = ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) <-> x = ( ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) ) ) ) |
| 76 | 2fveq3 | |- ( k = 1o -> ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) ) |
|
| 77 | fveq2 | |- ( k = 1o -> ( { <. (/) , A >. , <. 1o , B >. } ` k ) = ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) ) |
|
| 78 | fveq2 | |- ( k = 1o -> ( { <. (/) , C >. , <. 1o , D >. } ` k ) = ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) ) |
|
| 79 | 76 77 78 | oveq123d | |- ( k = 1o -> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) = ( ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) ) ) |
| 80 | 79 | eqeq2d | |- ( k = 1o -> ( x = ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) <-> x = ( ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) ) ) ) |
| 81 | 69 70 75 80 | rexpr | |- ( E. k e. { (/) , 1o } x = ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) <-> ( x = ( ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) ) \/ x = ( ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) ) ) ) |
| 82 | 68 81 | bitri | |- ( E. k e. 2o x = ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) <-> ( x = ( ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) ) \/ x = ( ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) ) ) ) |
| 83 | fvpr0o | |- ( R e. V -> ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) = R ) |
|
| 84 | 4 83 | syl | |- ( ph -> ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) = R ) |
| 85 | 84 | fveq2d | |- ( ph -> ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) = ( dist ` R ) ) |
| 86 | fvpr0o | |- ( A e. X -> ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) = A ) |
|
| 87 | 11 86 | syl | |- ( ph -> ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) = A ) |
| 88 | fvpr0o | |- ( C e. X -> ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) = C ) |
|
| 89 | 13 88 | syl | |- ( ph -> ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) = C ) |
| 90 | 85 87 89 | oveq123d | |- ( ph -> ( ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) ) = ( A ( dist ` R ) C ) ) |
| 91 | 7 | oveqi | |- ( A M C ) = ( A ( ( dist ` R ) |` ( X X. X ) ) C ) |
| 92 | 11 13 | ovresd | |- ( ph -> ( A ( ( dist ` R ) |` ( X X. X ) ) C ) = ( A ( dist ` R ) C ) ) |
| 93 | 91 92 | eqtrid | |- ( ph -> ( A M C ) = ( A ( dist ` R ) C ) ) |
| 94 | 90 93 | eqtr4d | |- ( ph -> ( ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) ) = ( A M C ) ) |
| 95 | 94 | eqeq2d | |- ( ph -> ( x = ( ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) ) <-> x = ( A M C ) ) ) |
| 96 | fvpr1o | |- ( S e. W -> ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) = S ) |
|
| 97 | 5 96 | syl | |- ( ph -> ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) = S ) |
| 98 | 97 | fveq2d | |- ( ph -> ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) = ( dist ` S ) ) |
| 99 | fvpr1o | |- ( B e. Y -> ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) = B ) |
|
| 100 | 12 99 | syl | |- ( ph -> ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) = B ) |
| 101 | fvpr1o | |- ( D e. Y -> ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) = D ) |
|
| 102 | 14 101 | syl | |- ( ph -> ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) = D ) |
| 103 | 98 100 102 | oveq123d | |- ( ph -> ( ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) ) = ( B ( dist ` S ) D ) ) |
| 104 | 8 | oveqi | |- ( B N D ) = ( B ( ( dist ` S ) |` ( Y X. Y ) ) D ) |
| 105 | 12 14 | ovresd | |- ( ph -> ( B ( ( dist ` S ) |` ( Y X. Y ) ) D ) = ( B ( dist ` S ) D ) ) |
| 106 | 104 105 | eqtrid | |- ( ph -> ( B N D ) = ( B ( dist ` S ) D ) ) |
| 107 | 103 106 | eqtr4d | |- ( ph -> ( ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) ) = ( B N D ) ) |
| 108 | 107 | eqeq2d | |- ( ph -> ( x = ( ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) ) <-> x = ( B N D ) ) ) |
| 109 | 95 108 | orbi12d | |- ( ph -> ( ( x = ( ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) ( { <. (/) , C >. , <. 1o , D >. } ` (/) ) ) \/ x = ( ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) ( { <. (/) , C >. , <. 1o , D >. } ` 1o ) ) ) <-> ( x = ( A M C ) \/ x = ( B N D ) ) ) ) |
| 110 | 82 109 | bitrid | |- ( ph -> ( E. k e. 2o x = ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) <-> ( x = ( A M C ) \/ x = ( B N D ) ) ) ) |
| 111 | eqid | |- ( k e. 2o |-> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) = ( k e. 2o |-> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) |
|
| 112 | 111 | elrnmpt | |- ( x e. _V -> ( x e. ran ( k e. 2o |-> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) <-> E. k e. 2o x = ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) ) |
| 113 | 112 | elv | |- ( x e. ran ( k e. 2o |-> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) <-> E. k e. 2o x = ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) |
| 114 | vex | |- x e. _V |
|
| 115 | 114 | elpr | |- ( x e. { ( A M C ) , ( B N D ) } <-> ( x = ( A M C ) \/ x = ( B N D ) ) ) |
| 116 | 110 113 115 | 3bitr4g | |- ( ph -> ( x e. ran ( k e. 2o |-> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) <-> x e. { ( A M C ) , ( B N D ) } ) ) |
| 117 | 116 | eqrdv | |- ( ph -> ran ( k e. 2o |-> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) = { ( A M C ) , ( B N D ) } ) |
| 118 | 117 | uneq1d | |- ( ph -> ( ran ( k e. 2o |-> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) u. { 0 } ) = ( { ( A M C ) , ( B N D ) } u. { 0 } ) ) |
| 119 | uncom | |- ( { ( A M C ) , ( B N D ) } u. { 0 } ) = ( { 0 } u. { ( A M C ) , ( B N D ) } ) |
|
| 120 | 118 119 | eqtrdi | |- ( ph -> ( ran ( k e. 2o |-> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) u. { 0 } ) = ( { 0 } u. { ( A M C ) , ( B N D ) } ) ) |
| 121 | 120 | supeq1d | |- ( ph -> sup ( ( ran ( k e. 2o |-> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) u. { 0 } ) , RR* , < ) = sup ( ( { 0 } u. { ( A M C ) , ( B N D ) } ) , RR* , < ) ) |
| 122 | 0xr | |- 0 e. RR* |
|
| 123 | 122 | a1i | |- ( ph -> 0 e. RR* ) |
| 124 | 123 | snssd | |- ( ph -> { 0 } C_ RR* ) |
| 125 | xmetcl | |- ( ( M e. ( *Met ` X ) /\ A e. X /\ C e. X ) -> ( A M C ) e. RR* ) |
|
| 126 | 9 11 13 125 | syl3anc | |- ( ph -> ( A M C ) e. RR* ) |
| 127 | xmetcl | |- ( ( N e. ( *Met ` Y ) /\ B e. Y /\ D e. Y ) -> ( B N D ) e. RR* ) |
|
| 128 | 10 12 14 127 | syl3anc | |- ( ph -> ( B N D ) e. RR* ) |
| 129 | 126 128 | prssd | |- ( ph -> { ( A M C ) , ( B N D ) } C_ RR* ) |
| 130 | xrltso | |- < Or RR* |
|
| 131 | supsn | |- ( ( < Or RR* /\ 0 e. RR* ) -> sup ( { 0 } , RR* , < ) = 0 ) |
|
| 132 | 130 122 131 | mp2an | |- sup ( { 0 } , RR* , < ) = 0 |
| 133 | supxrcl | |- ( { ( A M C ) , ( B N D ) } C_ RR* -> sup ( { ( A M C ) , ( B N D ) } , RR* , < ) e. RR* ) |
|
| 134 | 129 133 | syl | |- ( ph -> sup ( { ( A M C ) , ( B N D ) } , RR* , < ) e. RR* ) |
| 135 | xmetge0 | |- ( ( M e. ( *Met ` X ) /\ A e. X /\ C e. X ) -> 0 <_ ( A M C ) ) |
|
| 136 | 9 11 13 135 | syl3anc | |- ( ph -> 0 <_ ( A M C ) ) |
| 137 | ovex | |- ( A M C ) e. _V |
|
| 138 | 137 | prid1 | |- ( A M C ) e. { ( A M C ) , ( B N D ) } |
| 139 | supxrub | |- ( ( { ( A M C ) , ( B N D ) } C_ RR* /\ ( A M C ) e. { ( A M C ) , ( B N D ) } ) -> ( A M C ) <_ sup ( { ( A M C ) , ( B N D ) } , RR* , < ) ) |
|
| 140 | 129 138 139 | sylancl | |- ( ph -> ( A M C ) <_ sup ( { ( A M C ) , ( B N D ) } , RR* , < ) ) |
| 141 | 123 126 134 136 140 | xrletrd | |- ( ph -> 0 <_ sup ( { ( A M C ) , ( B N D ) } , RR* , < ) ) |
| 142 | 132 141 | eqbrtrid | |- ( ph -> sup ( { 0 } , RR* , < ) <_ sup ( { ( A M C ) , ( B N D ) } , RR* , < ) ) |
| 143 | supxrun | |- ( ( { 0 } C_ RR* /\ { ( A M C ) , ( B N D ) } C_ RR* /\ sup ( { 0 } , RR* , < ) <_ sup ( { ( A M C ) , ( B N D ) } , RR* , < ) ) -> sup ( ( { 0 } u. { ( A M C ) , ( B N D ) } ) , RR* , < ) = sup ( { ( A M C ) , ( B N D ) } , RR* , < ) ) |
|
| 144 | 124 129 142 143 | syl3anc | |- ( ph -> sup ( ( { 0 } u. { ( A M C ) , ( B N D ) } ) , RR* , < ) = sup ( { ( A M C ) , ( B N D ) } , RR* , < ) ) |
| 145 | 66 121 144 | 3eqtrd | |- ( ph -> ( { <. (/) , A >. , <. 1o , B >. } ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) { <. (/) , C >. , <. 1o , D >. } ) = sup ( { ( A M C ) , ( B N D ) } , RR* , < ) ) |
| 146 | 49 56 145 | 3eqtr3d | |- ( ph -> ( <. A , B >. P <. C , D >. ) = sup ( { ( A M C ) , ( B N D ) } , RR* , < ) ) |