This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The direct product of two metric spaces. Definition 14-1.5 of Gleason p. 225. (Contributed by NM, 20-Jun-2007) (Revised by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpsds.t | |- T = ( R Xs. S ) |
|
| xpsds.x | |- X = ( Base ` R ) |
||
| xpsds.y | |- Y = ( Base ` S ) |
||
| xpsds.1 | |- ( ph -> R e. V ) |
||
| xpsds.2 | |- ( ph -> S e. W ) |
||
| xpsds.p | |- P = ( dist ` T ) |
||
| xpsds.m | |- M = ( ( dist ` R ) |` ( X X. X ) ) |
||
| xpsds.n | |- N = ( ( dist ` S ) |` ( Y X. Y ) ) |
||
| xpsmet.3 | |- ( ph -> M e. ( Met ` X ) ) |
||
| xpsmet.4 | |- ( ph -> N e. ( Met ` Y ) ) |
||
| Assertion | xpsmet | |- ( ph -> P e. ( Met ` ( X X. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsds.t | |- T = ( R Xs. S ) |
|
| 2 | xpsds.x | |- X = ( Base ` R ) |
|
| 3 | xpsds.y | |- Y = ( Base ` S ) |
|
| 4 | xpsds.1 | |- ( ph -> R e. V ) |
|
| 5 | xpsds.2 | |- ( ph -> S e. W ) |
|
| 6 | xpsds.p | |- P = ( dist ` T ) |
|
| 7 | xpsds.m | |- M = ( ( dist ` R ) |` ( X X. X ) ) |
|
| 8 | xpsds.n | |- N = ( ( dist ` S ) |` ( Y X. Y ) ) |
|
| 9 | xpsmet.3 | |- ( ph -> M e. ( Met ` X ) ) |
|
| 10 | xpsmet.4 | |- ( ph -> N e. ( Met ` Y ) ) |
|
| 11 | eqid | |- ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
| 12 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 13 | eqid | |- ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
|
| 14 | 1 2 3 4 5 11 12 13 | xpsval | |- ( ph -> T = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 15 | 1 2 3 4 5 11 12 13 | xpsrnbas | |- ( ph -> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 16 | 11 | xpsff1o2 | |- ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 17 | f1ocnv | |- ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) ) |
|
| 18 | 16 17 | mp1i | |- ( ph -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) ) |
| 19 | ovexd | |- ( ph -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. _V ) |
|
| 20 | eqid | |- ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |` ( ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) X. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) = ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |` ( ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) X. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) |
|
| 21 | eqid | |- ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) |
|
| 22 | eqid | |- ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
|
| 23 | eqid | |- ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |
|
| 24 | eqid | |- ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
|
| 25 | eqid | |- ( dist ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( dist ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
|
| 26 | fvexd | |- ( ph -> ( Scalar ` R ) e. _V ) |
|
| 27 | 2onn | |- 2o e. _om |
|
| 28 | nnfi | |- ( 2o e. _om -> 2o e. Fin ) |
|
| 29 | 27 28 | mp1i | |- ( ph -> 2o e. Fin ) |
| 30 | fvexd | |- ( ( ph /\ k e. 2o ) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) e. _V ) |
|
| 31 | elpri | |- ( k e. { (/) , 1o } -> ( k = (/) \/ k = 1o ) ) |
|
| 32 | df2o3 | |- 2o = { (/) , 1o } |
|
| 33 | 31 32 | eleq2s | |- ( k e. 2o -> ( k = (/) \/ k = 1o ) ) |
| 34 | 9 | adantr | |- ( ( ph /\ k = (/) ) -> M e. ( Met ` X ) ) |
| 35 | fveq2 | |- ( k = (/) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) |
|
| 36 | fvpr0o | |- ( R e. V -> ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) = R ) |
|
| 37 | 4 36 | syl | |- ( ph -> ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) = R ) |
| 38 | 35 37 | sylan9eqr | |- ( ( ph /\ k = (/) ) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = R ) |
| 39 | 38 | fveq2d | |- ( ( ph /\ k = (/) ) -> ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( dist ` R ) ) |
| 40 | 38 | fveq2d | |- ( ( ph /\ k = (/) ) -> ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( Base ` R ) ) |
| 41 | 40 2 | eqtr4di | |- ( ( ph /\ k = (/) ) -> ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = X ) |
| 42 | 41 | sqxpeqd | |- ( ( ph /\ k = (/) ) -> ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( X X. X ) ) |
| 43 | 39 42 | reseq12d | |- ( ( ph /\ k = (/) ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( ( dist ` R ) |` ( X X. X ) ) ) |
| 44 | 43 7 | eqtr4di | |- ( ( ph /\ k = (/) ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = M ) |
| 45 | 41 | fveq2d | |- ( ( ph /\ k = (/) ) -> ( Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( Met ` X ) ) |
| 46 | 34 44 45 | 3eltr4d | |- ( ( ph /\ k = (/) ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
| 47 | 10 | adantr | |- ( ( ph /\ k = 1o ) -> N e. ( Met ` Y ) ) |
| 48 | fveq2 | |- ( k = 1o -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) |
|
| 49 | fvpr1o | |- ( S e. W -> ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) = S ) |
|
| 50 | 5 49 | syl | |- ( ph -> ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) = S ) |
| 51 | 48 50 | sylan9eqr | |- ( ( ph /\ k = 1o ) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = S ) |
| 52 | 51 | fveq2d | |- ( ( ph /\ k = 1o ) -> ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( dist ` S ) ) |
| 53 | 51 | fveq2d | |- ( ( ph /\ k = 1o ) -> ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( Base ` S ) ) |
| 54 | 53 3 | eqtr4di | |- ( ( ph /\ k = 1o ) -> ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = Y ) |
| 55 | 54 | sqxpeqd | |- ( ( ph /\ k = 1o ) -> ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( Y X. Y ) ) |
| 56 | 52 55 | reseq12d | |- ( ( ph /\ k = 1o ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( ( dist ` S ) |` ( Y X. Y ) ) ) |
| 57 | 56 8 | eqtr4di | |- ( ( ph /\ k = 1o ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = N ) |
| 58 | 54 | fveq2d | |- ( ( ph /\ k = 1o ) -> ( Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( Met ` Y ) ) |
| 59 | 47 57 58 | 3eltr4d | |- ( ( ph /\ k = 1o ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
| 60 | 46 59 | jaodan | |- ( ( ph /\ ( k = (/) \/ k = 1o ) ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
| 61 | 33 60 | sylan2 | |- ( ( ph /\ k e. 2o ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
| 62 | 21 22 23 24 25 26 29 30 61 | prdsmet | |- ( ph -> ( dist ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( Met ` ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) ) |
| 63 | fnpr2o | |- ( ( R e. V /\ S e. W ) -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) |
|
| 64 | 4 5 63 | syl2anc | |- ( ph -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) |
| 65 | dffn5 | |- ( { <. (/) , R >. , <. 1o , S >. } Fn 2o <-> { <. (/) , R >. , <. 1o , S >. } = ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) |
|
| 66 | 64 65 | sylib | |- ( ph -> { <. (/) , R >. , <. 1o , S >. } = ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) |
| 67 | 66 | oveq2d | |- ( ph -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
| 68 | 67 | fveq2d | |- ( ph -> ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( dist ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) |
| 69 | 67 | fveq2d | |- ( ph -> ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) |
| 70 | 15 69 | eqtrd | |- ( ph -> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) |
| 71 | 70 | fveq2d | |- ( ph -> ( Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) = ( Met ` ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) ) |
| 72 | 62 68 71 | 3eltr4d | |- ( ph -> ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) e. ( Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) |
| 73 | ssid | |- ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) C_ ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
| 74 | metres2 | |- ( ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) e. ( Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) /\ ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) C_ ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) -> ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |` ( ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) X. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) e. ( Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) |
|
| 75 | 72 73 74 | sylancl | |- ( ph -> ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |` ( ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) X. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) e. ( Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) |
| 76 | 14 15 18 19 20 6 75 | imasf1omet | |- ( ph -> P e. ( Met ` ( X X. Y ) ) ) |