This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the function appearing in xpsval . (Contributed by Mario Carneiro, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xpsff1o.f | |- F = ( x e. A , y e. B |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
| Assertion | xpsfval | |- ( ( X e. A /\ Y e. B ) -> ( X F Y ) = { <. (/) , X >. , <. 1o , Y >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsff1o.f | |- F = ( x e. A , y e. B |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
| 2 | simpl | |- ( ( x = X /\ y = Y ) -> x = X ) |
|
| 3 | 2 | opeq2d | |- ( ( x = X /\ y = Y ) -> <. (/) , x >. = <. (/) , X >. ) |
| 4 | simpr | |- ( ( x = X /\ y = Y ) -> y = Y ) |
|
| 5 | 4 | opeq2d | |- ( ( x = X /\ y = Y ) -> <. 1o , y >. = <. 1o , Y >. ) |
| 6 | 3 5 | preq12d | |- ( ( x = X /\ y = Y ) -> { <. (/) , x >. , <. 1o , y >. } = { <. (/) , X >. , <. 1o , Y >. } ) |
| 7 | prex | |- { <. (/) , X >. , <. 1o , Y >. } e. _V |
|
| 8 | 6 1 7 | ovmpoa | |- ( ( X e. A /\ Y e. B ) -> ( X F Y ) = { <. (/) , X >. , <. 1o , Y >. } ) |