This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
| prdsbasmpt.b | |- B = ( Base ` Y ) |
||
| prdsbasmpt.s | |- ( ph -> S e. V ) |
||
| prdsbasmpt.i | |- ( ph -> I e. W ) |
||
| prdsbasmpt.r | |- ( ph -> R Fn I ) |
||
| prdsplusgval.f | |- ( ph -> F e. B ) |
||
| prdsplusgval.g | |- ( ph -> G e. B ) |
||
| prdsdsval.d | |- D = ( dist ` Y ) |
||
| Assertion | prdsdsval | |- ( ph -> ( F D G ) = sup ( ( ran ( x e. I |-> ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsbasmpt.b | |- B = ( Base ` Y ) |
|
| 3 | prdsbasmpt.s | |- ( ph -> S e. V ) |
|
| 4 | prdsbasmpt.i | |- ( ph -> I e. W ) |
|
| 5 | prdsbasmpt.r | |- ( ph -> R Fn I ) |
|
| 6 | prdsplusgval.f | |- ( ph -> F e. B ) |
|
| 7 | prdsplusgval.g | |- ( ph -> G e. B ) |
|
| 8 | prdsdsval.d | |- D = ( dist ` Y ) |
|
| 9 | fnex | |- ( ( R Fn I /\ I e. W ) -> R e. _V ) |
|
| 10 | 5 4 9 | syl2anc | |- ( ph -> R e. _V ) |
| 11 | fndm | |- ( R Fn I -> dom R = I ) |
|
| 12 | 5 11 | syl | |- ( ph -> dom R = I ) |
| 13 | 1 3 10 2 12 8 | prdsds | |- ( ph -> D = ( f e. B , g e. B |-> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) ) |
| 14 | fveq1 | |- ( f = F -> ( f ` x ) = ( F ` x ) ) |
|
| 15 | fveq1 | |- ( g = G -> ( g ` x ) = ( G ` x ) ) |
|
| 16 | 14 15 | oveqan12d | |- ( ( f = F /\ g = G ) -> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) = ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) |
| 17 | 16 | adantl | |- ( ( ph /\ ( f = F /\ g = G ) ) -> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) = ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) |
| 18 | 17 | mpteq2dv | |- ( ( ph /\ ( f = F /\ g = G ) ) -> ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) ) |
| 19 | 18 | rneqd | |- ( ( ph /\ ( f = F /\ g = G ) ) -> ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) = ran ( x e. I |-> ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) ) |
| 20 | 19 | uneq1d | |- ( ( ph /\ ( f = F /\ g = G ) ) -> ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) = ( ran ( x e. I |-> ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) u. { 0 } ) ) |
| 21 | 20 | supeq1d | |- ( ( ph /\ ( f = F /\ g = G ) ) -> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R ` x ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) = sup ( ( ran ( x e. I |-> ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
| 22 | xrltso | |- < Or RR* |
|
| 23 | 22 | supex | |- sup ( ( ran ( x e. I |-> ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) u. { 0 } ) , RR* , < ) e. _V |
| 24 | 23 | a1i | |- ( ph -> sup ( ( ran ( x e. I |-> ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) u. { 0 } ) , RR* , < ) e. _V ) |
| 25 | 13 21 6 7 24 | ovmpod | |- ( ph -> ( F D G ) = sup ( ( ran ( x e. I |-> ( ( F ` x ) ( dist ` ( R ` x ) ) ( G ` x ) ) ) u. { 0 } ) , RR* , < ) ) |