This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function with a domain of 2o . (Contributed by Jim Kingdon, 25-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnpr2o | |- ( ( A e. V /\ B e. W ) -> { <. (/) , A >. , <. 1o , B >. } Fn 2o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 | |- (/) e. _om |
|
| 2 | 1 | a1i | |- ( ( A e. V /\ B e. W ) -> (/) e. _om ) |
| 3 | 1onn | |- 1o e. _om |
|
| 4 | 3 | a1i | |- ( ( A e. V /\ B e. W ) -> 1o e. _om ) |
| 5 | simpl | |- ( ( A e. V /\ B e. W ) -> A e. V ) |
|
| 6 | simpr | |- ( ( A e. V /\ B e. W ) -> B e. W ) |
|
| 7 | 1n0 | |- 1o =/= (/) |
|
| 8 | 7 | necomi | |- (/) =/= 1o |
| 9 | 8 | a1i | |- ( ( A e. V /\ B e. W ) -> (/) =/= 1o ) |
| 10 | fnprg | |- ( ( ( (/) e. _om /\ 1o e. _om ) /\ ( A e. V /\ B e. W ) /\ (/) =/= 1o ) -> { <. (/) , A >. , <. 1o , B >. } Fn { (/) , 1o } ) |
|
| 11 | 2 4 5 6 9 10 | syl221anc | |- ( ( A e. V /\ B e. W ) -> { <. (/) , A >. , <. 1o , B >. } Fn { (/) , 1o } ) |
| 12 | df2o3 | |- 2o = { (/) , 1o } |
|
| 13 | 12 | fneq2i | |- ( { <. (/) , A >. , <. 1o , B >. } Fn 2o <-> { <. (/) , A >. , <. 1o , B >. } Fn { (/) , 1o } ) |
| 14 | 11 13 | sylibr | |- ( ( A e. V /\ B e. W ) -> { <. (/) , A >. , <. 1o , B >. } Fn 2o ) |