This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for xpsxmet . (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpsds.t | |- T = ( R Xs. S ) |
|
| xpsds.x | |- X = ( Base ` R ) |
||
| xpsds.y | |- Y = ( Base ` S ) |
||
| xpsds.1 | |- ( ph -> R e. V ) |
||
| xpsds.2 | |- ( ph -> S e. W ) |
||
| xpsds.p | |- P = ( dist ` T ) |
||
| xpsds.m | |- M = ( ( dist ` R ) |` ( X X. X ) ) |
||
| xpsds.n | |- N = ( ( dist ` S ) |` ( Y X. Y ) ) |
||
| xpsds.3 | |- ( ph -> M e. ( *Met ` X ) ) |
||
| xpsds.4 | |- ( ph -> N e. ( *Met ` Y ) ) |
||
| Assertion | xpsxmetlem | |- ( ph -> ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) e. ( *Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsds.t | |- T = ( R Xs. S ) |
|
| 2 | xpsds.x | |- X = ( Base ` R ) |
|
| 3 | xpsds.y | |- Y = ( Base ` S ) |
|
| 4 | xpsds.1 | |- ( ph -> R e. V ) |
|
| 5 | xpsds.2 | |- ( ph -> S e. W ) |
|
| 6 | xpsds.p | |- P = ( dist ` T ) |
|
| 7 | xpsds.m | |- M = ( ( dist ` R ) |` ( X X. X ) ) |
|
| 8 | xpsds.n | |- N = ( ( dist ` S ) |` ( Y X. Y ) ) |
|
| 9 | xpsds.3 | |- ( ph -> M e. ( *Met ` X ) ) |
|
| 10 | xpsds.4 | |- ( ph -> N e. ( *Met ` Y ) ) |
|
| 11 | eqid | |- ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) |
|
| 12 | eqid | |- ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
|
| 13 | eqid | |- ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |
|
| 14 | eqid | |- ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
|
| 15 | eqid | |- ( dist ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( dist ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
|
| 16 | fvexd | |- ( ph -> ( Scalar ` R ) e. _V ) |
|
| 17 | 2on | |- 2o e. On |
|
| 18 | 17 | a1i | |- ( ph -> 2o e. On ) |
| 19 | fvexd | |- ( ( ph /\ k e. 2o ) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) e. _V ) |
|
| 20 | elpri | |- ( k e. { (/) , 1o } -> ( k = (/) \/ k = 1o ) ) |
|
| 21 | df2o3 | |- 2o = { (/) , 1o } |
|
| 22 | 20 21 | eleq2s | |- ( k e. 2o -> ( k = (/) \/ k = 1o ) ) |
| 23 | 9 | adantr | |- ( ( ph /\ k = (/) ) -> M e. ( *Met ` X ) ) |
| 24 | fveq2 | |- ( k = (/) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) |
|
| 25 | fvpr0o | |- ( R e. V -> ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) = R ) |
|
| 26 | 4 25 | syl | |- ( ph -> ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) = R ) |
| 27 | 24 26 | sylan9eqr | |- ( ( ph /\ k = (/) ) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = R ) |
| 28 | 27 | fveq2d | |- ( ( ph /\ k = (/) ) -> ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( dist ` R ) ) |
| 29 | 27 | fveq2d | |- ( ( ph /\ k = (/) ) -> ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( Base ` R ) ) |
| 30 | 29 2 | eqtr4di | |- ( ( ph /\ k = (/) ) -> ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = X ) |
| 31 | 30 | sqxpeqd | |- ( ( ph /\ k = (/) ) -> ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( X X. X ) ) |
| 32 | 28 31 | reseq12d | |- ( ( ph /\ k = (/) ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( ( dist ` R ) |` ( X X. X ) ) ) |
| 33 | 32 7 | eqtr4di | |- ( ( ph /\ k = (/) ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = M ) |
| 34 | 30 | fveq2d | |- ( ( ph /\ k = (/) ) -> ( *Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( *Met ` X ) ) |
| 35 | 23 33 34 | 3eltr4d | |- ( ( ph /\ k = (/) ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( *Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
| 36 | 10 | adantr | |- ( ( ph /\ k = 1o ) -> N e. ( *Met ` Y ) ) |
| 37 | fveq2 | |- ( k = 1o -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) |
|
| 38 | fvpr1o | |- ( S e. W -> ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) = S ) |
|
| 39 | 5 38 | syl | |- ( ph -> ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) = S ) |
| 40 | 37 39 | sylan9eqr | |- ( ( ph /\ k = 1o ) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = S ) |
| 41 | 40 | fveq2d | |- ( ( ph /\ k = 1o ) -> ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( dist ` S ) ) |
| 42 | 40 | fveq2d | |- ( ( ph /\ k = 1o ) -> ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( Base ` S ) ) |
| 43 | 42 3 | eqtr4di | |- ( ( ph /\ k = 1o ) -> ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = Y ) |
| 44 | 43 | sqxpeqd | |- ( ( ph /\ k = 1o ) -> ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( Y X. Y ) ) |
| 45 | 41 44 | reseq12d | |- ( ( ph /\ k = 1o ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( ( dist ` S ) |` ( Y X. Y ) ) ) |
| 46 | 45 8 | eqtr4di | |- ( ( ph /\ k = 1o ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = N ) |
| 47 | 43 | fveq2d | |- ( ( ph /\ k = 1o ) -> ( *Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( *Met ` Y ) ) |
| 48 | 36 46 47 | 3eltr4d | |- ( ( ph /\ k = 1o ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( *Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
| 49 | 35 48 | jaodan | |- ( ( ph /\ ( k = (/) \/ k = 1o ) ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( *Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
| 50 | 22 49 | sylan2 | |- ( ( ph /\ k e. 2o ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( *Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
| 51 | 11 12 13 14 15 16 18 19 50 | prdsxmet | |- ( ph -> ( dist ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( *Met ` ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) ) |
| 52 | fnpr2o | |- ( ( R e. V /\ S e. W ) -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) |
|
| 53 | 4 5 52 | syl2anc | |- ( ph -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) |
| 54 | dffn5 | |- ( { <. (/) , R >. , <. 1o , S >. } Fn 2o <-> { <. (/) , R >. , <. 1o , S >. } = ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) |
|
| 55 | 53 54 | sylib | |- ( ph -> { <. (/) , R >. , <. 1o , S >. } = ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) |
| 56 | 55 | oveq2d | |- ( ph -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
| 57 | 56 | fveq2d | |- ( ph -> ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( dist ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) |
| 58 | eqid | |- ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
| 59 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 60 | eqid | |- ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
|
| 61 | 1 2 3 4 5 58 59 60 | xpsrnbas | |- ( ph -> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 62 | 56 | fveq2d | |- ( ph -> ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) |
| 63 | 61 62 | eqtrd | |- ( ph -> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) |
| 64 | 63 | fveq2d | |- ( ph -> ( *Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) = ( *Met ` ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) ) |
| 65 | 51 57 64 | 3eltr4d | |- ( ph -> ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) e. ( *Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) |