This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the binary structure product function. (Contributed by Mario Carneiro, 14-Aug-2015) (Revised by Jim Kingdon, 25-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpsval.t | |- T = ( R Xs. S ) |
|
| xpsval.x | |- X = ( Base ` R ) |
||
| xpsval.y | |- Y = ( Base ` S ) |
||
| xpsval.1 | |- ( ph -> R e. V ) |
||
| xpsval.2 | |- ( ph -> S e. W ) |
||
| xpsval.f | |- F = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
||
| xpsval.k | |- G = ( Scalar ` R ) |
||
| xpsval.u | |- U = ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
||
| Assertion | xpsval | |- ( ph -> T = ( `' F "s U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsval.t | |- T = ( R Xs. S ) |
|
| 2 | xpsval.x | |- X = ( Base ` R ) |
|
| 3 | xpsval.y | |- Y = ( Base ` S ) |
|
| 4 | xpsval.1 | |- ( ph -> R e. V ) |
|
| 5 | xpsval.2 | |- ( ph -> S e. W ) |
|
| 6 | xpsval.f | |- F = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
| 7 | xpsval.k | |- G = ( Scalar ` R ) |
|
| 8 | xpsval.u | |- U = ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
|
| 9 | 4 | elexd | |- ( ph -> R e. _V ) |
| 10 | 5 | elexd | |- ( ph -> S e. _V ) |
| 11 | fveq2 | |- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
|
| 12 | 11 2 | eqtr4di | |- ( r = R -> ( Base ` r ) = X ) |
| 13 | fveq2 | |- ( s = S -> ( Base ` s ) = ( Base ` S ) ) |
|
| 14 | 13 3 | eqtr4di | |- ( s = S -> ( Base ` s ) = Y ) |
| 15 | mpoeq12 | |- ( ( ( Base ` r ) = X /\ ( Base ` s ) = Y ) -> ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
|
| 16 | 12 14 15 | syl2an | |- ( ( r = R /\ s = S ) -> ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
| 17 | 16 6 | eqtr4di | |- ( ( r = R /\ s = S ) -> ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) = F ) |
| 18 | 17 | cnveqd | |- ( ( r = R /\ s = S ) -> `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) = `' F ) |
| 19 | fveq2 | |- ( r = R -> ( Scalar ` r ) = ( Scalar ` R ) ) |
|
| 20 | 19 | adantr | |- ( ( r = R /\ s = S ) -> ( Scalar ` r ) = ( Scalar ` R ) ) |
| 21 | 20 7 | eqtr4di | |- ( ( r = R /\ s = S ) -> ( Scalar ` r ) = G ) |
| 22 | simpl | |- ( ( r = R /\ s = S ) -> r = R ) |
|
| 23 | 22 | opeq2d | |- ( ( r = R /\ s = S ) -> <. (/) , r >. = <. (/) , R >. ) |
| 24 | simpr | |- ( ( r = R /\ s = S ) -> s = S ) |
|
| 25 | 24 | opeq2d | |- ( ( r = R /\ s = S ) -> <. 1o , s >. = <. 1o , S >. ) |
| 26 | 23 25 | preq12d | |- ( ( r = R /\ s = S ) -> { <. (/) , r >. , <. 1o , s >. } = { <. (/) , R >. , <. 1o , S >. } ) |
| 27 | 21 26 | oveq12d | |- ( ( r = R /\ s = S ) -> ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) = ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |
| 28 | 27 8 | eqtr4di | |- ( ( r = R /\ s = S ) -> ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) = U ) |
| 29 | 18 28 | oveq12d | |- ( ( r = R /\ s = S ) -> ( `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) ) = ( `' F "s U ) ) |
| 30 | df-xps | |- Xs. = ( r e. _V , s e. _V |-> ( `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) ) ) |
|
| 31 | ovex | |- ( `' F "s U ) e. _V |
|
| 32 | 29 30 31 | ovmpoa | |- ( ( R e. _V /\ S e. _V ) -> ( R Xs. S ) = ( `' F "s U ) ) |
| 33 | 9 10 32 | syl2anc | |- ( ph -> ( R Xs. S ) = ( `' F "s U ) ) |
| 34 | 1 33 | eqtrid | |- ( ph -> T = ( `' F "s U ) ) |