This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of the union of two sets of extended reals equals the largest of their suprema. (Contributed by NM, 19-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrun | |- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> sup ( ( A u. B ) , RR* , < ) = sup ( B , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unss | |- ( ( A C_ RR* /\ B C_ RR* ) <-> ( A u. B ) C_ RR* ) |
|
| 2 | 1 | biimpi | |- ( ( A C_ RR* /\ B C_ RR* ) -> ( A u. B ) C_ RR* ) |
| 3 | 2 | 3adant3 | |- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> ( A u. B ) C_ RR* ) |
| 4 | supxrcl | |- ( B C_ RR* -> sup ( B , RR* , < ) e. RR* ) |
|
| 5 | 4 | 3ad2ant2 | |- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> sup ( B , RR* , < ) e. RR* ) |
| 6 | elun | |- ( x e. ( A u. B ) <-> ( x e. A \/ x e. B ) ) |
|
| 7 | xrltso | |- < Or RR* |
|
| 8 | 7 | a1i | |- ( A C_ RR* -> < Or RR* ) |
| 9 | xrsupss | |- ( A C_ RR* -> E. y e. RR* ( A. z e. A -. y < z /\ A. z e. RR* ( z < y -> E. w e. A z < w ) ) ) |
|
| 10 | 8 9 | supub | |- ( A C_ RR* -> ( x e. A -> -. sup ( A , RR* , < ) < x ) ) |
| 11 | 10 | 3ad2ant1 | |- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> ( x e. A -> -. sup ( A , RR* , < ) < x ) ) |
| 12 | supxrcl | |- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
|
| 13 | 12 | ad2antrr | |- ( ( ( A C_ RR* /\ B C_ RR* ) /\ x e. A ) -> sup ( A , RR* , < ) e. RR* ) |
| 14 | 4 | ad2antlr | |- ( ( ( A C_ RR* /\ B C_ RR* ) /\ x e. A ) -> sup ( B , RR* , < ) e. RR* ) |
| 15 | ssel2 | |- ( ( A C_ RR* /\ x e. A ) -> x e. RR* ) |
|
| 16 | 15 | adantlr | |- ( ( ( A C_ RR* /\ B C_ RR* ) /\ x e. A ) -> x e. RR* ) |
| 17 | xrlelttr | |- ( ( sup ( A , RR* , < ) e. RR* /\ sup ( B , RR* , < ) e. RR* /\ x e. RR* ) -> ( ( sup ( A , RR* , < ) <_ sup ( B , RR* , < ) /\ sup ( B , RR* , < ) < x ) -> sup ( A , RR* , < ) < x ) ) |
|
| 18 | 13 14 16 17 | syl3anc | |- ( ( ( A C_ RR* /\ B C_ RR* ) /\ x e. A ) -> ( ( sup ( A , RR* , < ) <_ sup ( B , RR* , < ) /\ sup ( B , RR* , < ) < x ) -> sup ( A , RR* , < ) < x ) ) |
| 19 | 18 | expdimp | |- ( ( ( ( A C_ RR* /\ B C_ RR* ) /\ x e. A ) /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> ( sup ( B , RR* , < ) < x -> sup ( A , RR* , < ) < x ) ) |
| 20 | 19 | con3d | |- ( ( ( ( A C_ RR* /\ B C_ RR* ) /\ x e. A ) /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> ( -. sup ( A , RR* , < ) < x -> -. sup ( B , RR* , < ) < x ) ) |
| 21 | 20 | exp41 | |- ( A C_ RR* -> ( B C_ RR* -> ( x e. A -> ( sup ( A , RR* , < ) <_ sup ( B , RR* , < ) -> ( -. sup ( A , RR* , < ) < x -> -. sup ( B , RR* , < ) < x ) ) ) ) ) |
| 22 | 21 | com34 | |- ( A C_ RR* -> ( B C_ RR* -> ( sup ( A , RR* , < ) <_ sup ( B , RR* , < ) -> ( x e. A -> ( -. sup ( A , RR* , < ) < x -> -. sup ( B , RR* , < ) < x ) ) ) ) ) |
| 23 | 22 | 3imp | |- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> ( x e. A -> ( -. sup ( A , RR* , < ) < x -> -. sup ( B , RR* , < ) < x ) ) ) |
| 24 | 11 23 | mpdd | |- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> ( x e. A -> -. sup ( B , RR* , < ) < x ) ) |
| 25 | 7 | a1i | |- ( B C_ RR* -> < Or RR* ) |
| 26 | xrsupss | |- ( B C_ RR* -> E. y e. RR* ( A. z e. B -. y < z /\ A. z e. RR* ( z < y -> E. w e. B z < w ) ) ) |
|
| 27 | 25 26 | supub | |- ( B C_ RR* -> ( x e. B -> -. sup ( B , RR* , < ) < x ) ) |
| 28 | 27 | 3ad2ant2 | |- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> ( x e. B -> -. sup ( B , RR* , < ) < x ) ) |
| 29 | 24 28 | jaod | |- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> ( ( x e. A \/ x e. B ) -> -. sup ( B , RR* , < ) < x ) ) |
| 30 | 6 29 | biimtrid | |- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> ( x e. ( A u. B ) -> -. sup ( B , RR* , < ) < x ) ) |
| 31 | 30 | ralrimiv | |- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> A. x e. ( A u. B ) -. sup ( B , RR* , < ) < x ) |
| 32 | rexr | |- ( x e. RR -> x e. RR* ) |
|
| 33 | xrsupss | |- ( B C_ RR* -> E. x e. RR* ( A. z e. B -. x < z /\ A. z e. RR* ( z < x -> E. y e. B z < y ) ) ) |
|
| 34 | 25 33 | suplub | |- ( B C_ RR* -> ( ( x e. RR* /\ x < sup ( B , RR* , < ) ) -> E. y e. B x < y ) ) |
| 35 | 32 34 | sylani | |- ( B C_ RR* -> ( ( x e. RR /\ x < sup ( B , RR* , < ) ) -> E. y e. B x < y ) ) |
| 36 | elun2 | |- ( y e. B -> y e. ( A u. B ) ) |
|
| 37 | 36 | anim1i | |- ( ( y e. B /\ x < y ) -> ( y e. ( A u. B ) /\ x < y ) ) |
| 38 | 37 | reximi2 | |- ( E. y e. B x < y -> E. y e. ( A u. B ) x < y ) |
| 39 | 35 38 | syl6 | |- ( B C_ RR* -> ( ( x e. RR /\ x < sup ( B , RR* , < ) ) -> E. y e. ( A u. B ) x < y ) ) |
| 40 | 39 | expd | |- ( B C_ RR* -> ( x e. RR -> ( x < sup ( B , RR* , < ) -> E. y e. ( A u. B ) x < y ) ) ) |
| 41 | 40 | ralrimiv | |- ( B C_ RR* -> A. x e. RR ( x < sup ( B , RR* , < ) -> E. y e. ( A u. B ) x < y ) ) |
| 42 | 41 | 3ad2ant2 | |- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> A. x e. RR ( x < sup ( B , RR* , < ) -> E. y e. ( A u. B ) x < y ) ) |
| 43 | supxr | |- ( ( ( ( A u. B ) C_ RR* /\ sup ( B , RR* , < ) e. RR* ) /\ ( A. x e. ( A u. B ) -. sup ( B , RR* , < ) < x /\ A. x e. RR ( x < sup ( B , RR* , < ) -> E. y e. ( A u. B ) x < y ) ) ) -> sup ( ( A u. B ) , RR* , < ) = sup ( B , RR* , < ) ) |
|
| 44 | 3 5 31 42 43 | syl22anc | |- ( ( A C_ RR* /\ B C_ RR* /\ sup ( A , RR* , < ) <_ sup ( B , RR* , < ) ) -> sup ( ( A u. B ) , RR* , < ) = sup ( B , RR* , < ) ) |