This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for redwlk . (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 29-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | redwlklem | |- ( ( F e. Word S /\ 1 <_ ( # ` F ) /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( P |` ( 0 ..^ ( # ` F ) ) ) : ( 0 ... ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) ) --> V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( F e. Word S /\ 1 <_ ( # ` F ) ) /\ P : ( 0 ... ( # ` F ) ) --> V ) -> P : ( 0 ... ( # ` F ) ) --> V ) |
|
| 2 | fzossfz | |- ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
|
| 3 | fssres | |- ( ( P : ( 0 ... ( # ` F ) ) --> V /\ ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) -> ( P |` ( 0 ..^ ( # ` F ) ) ) : ( 0 ..^ ( # ` F ) ) --> V ) |
|
| 4 | 1 2 3 | sylancl | |- ( ( ( F e. Word S /\ 1 <_ ( # ` F ) ) /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( P |` ( 0 ..^ ( # ` F ) ) ) : ( 0 ..^ ( # ` F ) ) --> V ) |
| 5 | 4 | ex | |- ( ( F e. Word S /\ 1 <_ ( # ` F ) ) -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( P |` ( 0 ..^ ( # ` F ) ) ) : ( 0 ..^ ( # ` F ) ) --> V ) ) |
| 6 | lencl | |- ( F e. Word S -> ( # ` F ) e. NN0 ) |
|
| 7 | 6 | nn0zd | |- ( F e. Word S -> ( # ` F ) e. ZZ ) |
| 8 | fzoval | |- ( ( # ` F ) e. ZZ -> ( 0 ..^ ( # ` F ) ) = ( 0 ... ( ( # ` F ) - 1 ) ) ) |
|
| 9 | 7 8 | syl | |- ( F e. Word S -> ( 0 ..^ ( # ` F ) ) = ( 0 ... ( ( # ` F ) - 1 ) ) ) |
| 10 | 9 | adantr | |- ( ( F e. Word S /\ 1 <_ ( # ` F ) ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ... ( ( # ` F ) - 1 ) ) ) |
| 11 | wrdred1hash | |- ( ( F e. Word S /\ 1 <_ ( # ` F ) ) -> ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) = ( ( # ` F ) - 1 ) ) |
|
| 12 | oveq2 | |- ( ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) = ( ( # ` F ) - 1 ) -> ( 0 ... ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) ) = ( 0 ... ( ( # ` F ) - 1 ) ) ) |
|
| 13 | 12 | eqeq2d | |- ( ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) = ( ( # ` F ) - 1 ) -> ( ( 0 ..^ ( # ` F ) ) = ( 0 ... ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) ) <-> ( 0 ..^ ( # ` F ) ) = ( 0 ... ( ( # ` F ) - 1 ) ) ) ) |
| 14 | 11 13 | syl | |- ( ( F e. Word S /\ 1 <_ ( # ` F ) ) -> ( ( 0 ..^ ( # ` F ) ) = ( 0 ... ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) ) <-> ( 0 ..^ ( # ` F ) ) = ( 0 ... ( ( # ` F ) - 1 ) ) ) ) |
| 15 | 10 14 | mpbird | |- ( ( F e. Word S /\ 1 <_ ( # ` F ) ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ... ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) ) ) |
| 16 | 15 | feq2d | |- ( ( F e. Word S /\ 1 <_ ( # ` F ) ) -> ( ( P |` ( 0 ..^ ( # ` F ) ) ) : ( 0 ..^ ( # ` F ) ) --> V <-> ( P |` ( 0 ..^ ( # ` F ) ) ) : ( 0 ... ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) ) --> V ) ) |
| 17 | 5 16 | sylibd | |- ( ( F e. Word S /\ 1 <_ ( # ` F ) ) -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( P |` ( 0 ..^ ( # ` F ) ) ) : ( 0 ... ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) ) --> V ) ) |
| 18 | 17 | 3impia | |- ( ( F e. Word S /\ 1 <_ ( # ` F ) /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( P |` ( 0 ..^ ( # ` F ) ) ) : ( 0 ... ( # ` ( F |` ( 0 ..^ ( ( # ` F ) - 1 ) ) ) ) ) --> V ) |