This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wlkres . (Contributed by AV, 5-Mar-2021) (Revised by AV, 30-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkres.v | |- V = ( Vtx ` G ) |
|
| wlkres.i | |- I = ( iEdg ` G ) |
||
| wlkres.d | |- ( ph -> F ( Walks ` G ) P ) |
||
| wlkres.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
||
| wlkres.s | |- ( ph -> ( Vtx ` S ) = V ) |
||
| Assertion | wlkreslem | |- ( ph -> S e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkres.v | |- V = ( Vtx ` G ) |
|
| 2 | wlkres.i | |- I = ( iEdg ` G ) |
|
| 3 | wlkres.d | |- ( ph -> F ( Walks ` G ) P ) |
|
| 4 | wlkres.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
|
| 5 | wlkres.s | |- ( ph -> ( Vtx ` S ) = V ) |
|
| 6 | ax-1 | |- ( S e. _V -> ( ph -> S e. _V ) ) |
|
| 7 | df-nel | |- ( S e/ _V <-> -. S e. _V ) |
|
| 8 | df-br | |- ( F ( Walks ` G ) P <-> <. F , P >. e. ( Walks ` G ) ) |
|
| 9 | ne0i | |- ( <. F , P >. e. ( Walks ` G ) -> ( Walks ` G ) =/= (/) ) |
|
| 10 | 5 1 | eqtrdi | |- ( ph -> ( Vtx ` S ) = ( Vtx ` G ) ) |
| 11 | 10 | anim1ci | |- ( ( ph /\ S e/ _V ) -> ( S e/ _V /\ ( Vtx ` S ) = ( Vtx ` G ) ) ) |
| 12 | wlk0prc | |- ( ( S e/ _V /\ ( Vtx ` S ) = ( Vtx ` G ) ) -> ( Walks ` G ) = (/) ) |
|
| 13 | eqneqall | |- ( ( Walks ` G ) = (/) -> ( ( Walks ` G ) =/= (/) -> S e. _V ) ) |
|
| 14 | 11 12 13 | 3syl | |- ( ( ph /\ S e/ _V ) -> ( ( Walks ` G ) =/= (/) -> S e. _V ) ) |
| 15 | 14 | expcom | |- ( S e/ _V -> ( ph -> ( ( Walks ` G ) =/= (/) -> S e. _V ) ) ) |
| 16 | 15 | com13 | |- ( ( Walks ` G ) =/= (/) -> ( ph -> ( S e/ _V -> S e. _V ) ) ) |
| 17 | 9 16 | syl | |- ( <. F , P >. e. ( Walks ` G ) -> ( ph -> ( S e/ _V -> S e. _V ) ) ) |
| 18 | 8 17 | sylbi | |- ( F ( Walks ` G ) P -> ( ph -> ( S e/ _V -> S e. _V ) ) ) |
| 19 | 3 18 | mpcom | |- ( ph -> ( S e/ _V -> S e. _V ) ) |
| 20 | 19 | com12 | |- ( S e/ _V -> ( ph -> S e. _V ) ) |
| 21 | 7 20 | sylbir | |- ( -. S e. _V -> ( ph -> S e. _V ) ) |
| 22 | 6 21 | pm2.61i | |- ( ph -> S e. _V ) |