This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the function value of a restriction for a function restricted to the image of the restricting subset. (Contributed by AV, 6-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resfvresima.f | |- ( ph -> Fun F ) |
|
| resfvresima.s | |- ( ph -> S C_ dom F ) |
||
| resfvresima.x | |- ( ph -> X e. S ) |
||
| Assertion | resfvresima | |- ( ph -> ( ( H |` ( F " S ) ) ` ( ( F |` S ) ` X ) ) = ( H ` ( F ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resfvresima.f | |- ( ph -> Fun F ) |
|
| 2 | resfvresima.s | |- ( ph -> S C_ dom F ) |
|
| 3 | resfvresima.x | |- ( ph -> X e. S ) |
|
| 4 | 3 | fvresd | |- ( ph -> ( ( F |` S ) ` X ) = ( F ` X ) ) |
| 5 | 4 | fveq2d | |- ( ph -> ( ( H |` ( F " S ) ) ` ( ( F |` S ) ` X ) ) = ( ( H |` ( F " S ) ) ` ( F ` X ) ) ) |
| 6 | 1 2 | jca | |- ( ph -> ( Fun F /\ S C_ dom F ) ) |
| 7 | funfvima2 | |- ( ( Fun F /\ S C_ dom F ) -> ( X e. S -> ( F ` X ) e. ( F " S ) ) ) |
|
| 8 | 6 3 7 | sylc | |- ( ph -> ( F ` X ) e. ( F " S ) ) |
| 9 | 8 | fvresd | |- ( ph -> ( ( H |` ( F " S ) ) ` ( F ` X ) ) = ( H ` ( F ` X ) ) ) |
| 10 | 5 9 | eqtrd | |- ( ph -> ( ( H |` ( F " S ) ) ` ( ( F |` S ) ` X ) ) = ( H ` ( F ` X ) ) ) |