This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The law of concretion for a binary relation. Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brab2a.1 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
|
| brab2a.2 | |- R = { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ph ) } |
||
| Assertion | brab2a | |- ( A R B <-> ( ( A e. C /\ B e. D ) /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brab2a.1 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
|
| 2 | brab2a.2 | |- R = { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ph ) } |
|
| 3 | opabssxp | |- { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ph ) } C_ ( C X. D ) |
|
| 4 | 2 3 | eqsstri | |- R C_ ( C X. D ) |
| 5 | 4 | brel | |- ( A R B -> ( A e. C /\ B e. D ) ) |
| 6 | df-br | |- ( A R B <-> <. A , B >. e. R ) |
|
| 7 | 2 | eleq2i | |- ( <. A , B >. e. R <-> <. A , B >. e. { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ph ) } ) |
| 8 | 6 7 | bitri | |- ( A R B <-> <. A , B >. e. { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ph ) } ) |
| 9 | 1 | opelopab2a | |- ( ( A e. C /\ B e. D ) -> ( <. A , B >. e. { <. x , y >. | ( ( x e. C /\ y e. D ) /\ ph ) } <-> ps ) ) |
| 10 | 8 9 | bitrid | |- ( ( A e. C /\ B e. D ) -> ( A R B <-> ps ) ) |
| 11 | 5 10 | biadanii | |- ( A R B <-> ( ( A e. C /\ B e. D ) /\ ps ) ) |