This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A representative of a nonempty equivalence class belongs to the domain of the equivalence relation. (Contributed by NM, 15-Feb-1996) (Revised by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecdmn0 | |- ( A e. dom R <-> [ A ] R =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. dom R -> A e. _V ) |
|
| 2 | n0 | |- ( [ A ] R =/= (/) <-> E. x x e. [ A ] R ) |
|
| 3 | ecexr | |- ( x e. [ A ] R -> A e. _V ) |
|
| 4 | 3 | exlimiv | |- ( E. x x e. [ A ] R -> A e. _V ) |
| 5 | 2 4 | sylbi | |- ( [ A ] R =/= (/) -> A e. _V ) |
| 6 | vex | |- x e. _V |
|
| 7 | elecg | |- ( ( x e. _V /\ A e. _V ) -> ( x e. [ A ] R <-> A R x ) ) |
|
| 8 | 6 7 | mpan | |- ( A e. _V -> ( x e. [ A ] R <-> A R x ) ) |
| 9 | 8 | exbidv | |- ( A e. _V -> ( E. x x e. [ A ] R <-> E. x A R x ) ) |
| 10 | 2 | a1i | |- ( A e. _V -> ( [ A ] R =/= (/) <-> E. x x e. [ A ] R ) ) |
| 11 | eldmg | |- ( A e. _V -> ( A e. dom R <-> E. x A R x ) ) |
|
| 12 | 9 10 11 | 3bitr4rd | |- ( A e. _V -> ( A e. dom R <-> [ A ] R =/= (/) ) ) |
| 13 | 1 5 12 | pm5.21nii | |- ( A e. dom R <-> [ A ] R =/= (/) ) |