This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | |- C e. ZZ |
|
| om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
||
| uzrdg.1 | |- A e. _V |
||
| uzrdg.2 | |- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) |
||
| Assertion | uzrdglem | |- ( B e. ( ZZ>= ` C ) -> <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. e. ran R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | |- C e. ZZ |
|
| 2 | om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
|
| 3 | uzrdg.1 | |- A e. _V |
|
| 4 | uzrdg.2 | |- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) |
|
| 5 | 1 2 | om2uzf1oi | |- G : _om -1-1-onto-> ( ZZ>= ` C ) |
| 6 | f1ocnvdm | |- ( ( G : _om -1-1-onto-> ( ZZ>= ` C ) /\ B e. ( ZZ>= ` C ) ) -> ( `' G ` B ) e. _om ) |
|
| 7 | 5 6 | mpan | |- ( B e. ( ZZ>= ` C ) -> ( `' G ` B ) e. _om ) |
| 8 | 1 2 3 4 | om2uzrdg | |- ( ( `' G ` B ) e. _om -> ( R ` ( `' G ` B ) ) = <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) |
| 9 | 7 8 | syl | |- ( B e. ( ZZ>= ` C ) -> ( R ` ( `' G ` B ) ) = <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) |
| 10 | f1ocnvfv2 | |- ( ( G : _om -1-1-onto-> ( ZZ>= ` C ) /\ B e. ( ZZ>= ` C ) ) -> ( G ` ( `' G ` B ) ) = B ) |
|
| 11 | 5 10 | mpan | |- ( B e. ( ZZ>= ` C ) -> ( G ` ( `' G ` B ) ) = B ) |
| 12 | 11 | opeq1d | |- ( B e. ( ZZ>= ` C ) -> <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. = <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) |
| 13 | 9 12 | eqtrd | |- ( B e. ( ZZ>= ` C ) -> ( R ` ( `' G ` B ) ) = <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) |
| 14 | frfnom | |- ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om |
|
| 15 | 4 | fneq1i | |- ( R Fn _om <-> ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om ) |
| 16 | 14 15 | mpbir | |- R Fn _om |
| 17 | fnfvelrn | |- ( ( R Fn _om /\ ( `' G ` B ) e. _om ) -> ( R ` ( `' G ` B ) ) e. ran R ) |
|
| 18 | 16 7 17 | sylancr | |- ( B e. ( ZZ>= ` C ) -> ( R ` ( `' G ` B ) ) e. ran R ) |
| 19 | 13 18 | eqeltrrd | |- ( B e. ( ZZ>= ` C ) -> <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. e. ran R ) |