This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: G (see om2uz0i ) is a one-to-one onto mapping. (Contributed by NM, 3-Oct-2004) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | |- C e. ZZ |
|
| om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
||
| Assertion | om2uzf1oi | |- G : _om -1-1-onto-> ( ZZ>= ` C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | |- C e. ZZ |
|
| 2 | om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
|
| 3 | frfnom | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) Fn _om |
|
| 4 | 2 | fneq1i | |- ( G Fn _om <-> ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) Fn _om ) |
| 5 | 3 4 | mpbir | |- G Fn _om |
| 6 | 1 2 | om2uzrani | |- ran G = ( ZZ>= ` C ) |
| 7 | 6 | eqimssi | |- ran G C_ ( ZZ>= ` C ) |
| 8 | df-f | |- ( G : _om --> ( ZZ>= ` C ) <-> ( G Fn _om /\ ran G C_ ( ZZ>= ` C ) ) ) |
|
| 9 | 5 7 8 | mpbir2an | |- G : _om --> ( ZZ>= ` C ) |
| 10 | 1 2 | om2uzuzi | |- ( y e. _om -> ( G ` y ) e. ( ZZ>= ` C ) ) |
| 11 | eluzelz | |- ( ( G ` y ) e. ( ZZ>= ` C ) -> ( G ` y ) e. ZZ ) |
|
| 12 | 10 11 | syl | |- ( y e. _om -> ( G ` y ) e. ZZ ) |
| 13 | 12 | zred | |- ( y e. _om -> ( G ` y ) e. RR ) |
| 14 | 1 2 | om2uzuzi | |- ( z e. _om -> ( G ` z ) e. ( ZZ>= ` C ) ) |
| 15 | eluzelz | |- ( ( G ` z ) e. ( ZZ>= ` C ) -> ( G ` z ) e. ZZ ) |
|
| 16 | 14 15 | syl | |- ( z e. _om -> ( G ` z ) e. ZZ ) |
| 17 | 16 | zred | |- ( z e. _om -> ( G ` z ) e. RR ) |
| 18 | lttri3 | |- ( ( ( G ` y ) e. RR /\ ( G ` z ) e. RR ) -> ( ( G ` y ) = ( G ` z ) <-> ( -. ( G ` y ) < ( G ` z ) /\ -. ( G ` z ) < ( G ` y ) ) ) ) |
|
| 19 | 13 17 18 | syl2an | |- ( ( y e. _om /\ z e. _om ) -> ( ( G ` y ) = ( G ` z ) <-> ( -. ( G ` y ) < ( G ` z ) /\ -. ( G ` z ) < ( G ` y ) ) ) ) |
| 20 | ioran | |- ( -. ( ( G ` y ) < ( G ` z ) \/ ( G ` z ) < ( G ` y ) ) <-> ( -. ( G ` y ) < ( G ` z ) /\ -. ( G ` z ) < ( G ` y ) ) ) |
|
| 21 | 19 20 | bitr4di | |- ( ( y e. _om /\ z e. _om ) -> ( ( G ` y ) = ( G ` z ) <-> -. ( ( G ` y ) < ( G ` z ) \/ ( G ` z ) < ( G ` y ) ) ) ) |
| 22 | nnord | |- ( y e. _om -> Ord y ) |
|
| 23 | nnord | |- ( z e. _om -> Ord z ) |
|
| 24 | ordtri3 | |- ( ( Ord y /\ Ord z ) -> ( y = z <-> -. ( y e. z \/ z e. y ) ) ) |
|
| 25 | 22 23 24 | syl2an | |- ( ( y e. _om /\ z e. _om ) -> ( y = z <-> -. ( y e. z \/ z e. y ) ) ) |
| 26 | 25 | con2bid | |- ( ( y e. _om /\ z e. _om ) -> ( ( y e. z \/ z e. y ) <-> -. y = z ) ) |
| 27 | 1 2 | om2uzlti | |- ( ( y e. _om /\ z e. _om ) -> ( y e. z -> ( G ` y ) < ( G ` z ) ) ) |
| 28 | 1 2 | om2uzlti | |- ( ( z e. _om /\ y e. _om ) -> ( z e. y -> ( G ` z ) < ( G ` y ) ) ) |
| 29 | 28 | ancoms | |- ( ( y e. _om /\ z e. _om ) -> ( z e. y -> ( G ` z ) < ( G ` y ) ) ) |
| 30 | 27 29 | orim12d | |- ( ( y e. _om /\ z e. _om ) -> ( ( y e. z \/ z e. y ) -> ( ( G ` y ) < ( G ` z ) \/ ( G ` z ) < ( G ` y ) ) ) ) |
| 31 | 26 30 | sylbird | |- ( ( y e. _om /\ z e. _om ) -> ( -. y = z -> ( ( G ` y ) < ( G ` z ) \/ ( G ` z ) < ( G ` y ) ) ) ) |
| 32 | 31 | con1d | |- ( ( y e. _om /\ z e. _om ) -> ( -. ( ( G ` y ) < ( G ` z ) \/ ( G ` z ) < ( G ` y ) ) -> y = z ) ) |
| 33 | 21 32 | sylbid | |- ( ( y e. _om /\ z e. _om ) -> ( ( G ` y ) = ( G ` z ) -> y = z ) ) |
| 34 | 33 | rgen2 | |- A. y e. _om A. z e. _om ( ( G ` y ) = ( G ` z ) -> y = z ) |
| 35 | dff13 | |- ( G : _om -1-1-> ( ZZ>= ` C ) <-> ( G : _om --> ( ZZ>= ` C ) /\ A. y e. _om A. z e. _om ( ( G ` y ) = ( G ` z ) -> y = z ) ) ) |
|
| 36 | 9 34 35 | mpbir2an | |- G : _om -1-1-> ( ZZ>= ` C ) |
| 37 | dff1o5 | |- ( G : _om -1-1-onto-> ( ZZ>= ` C ) <-> ( G : _om -1-1-> ( ZZ>= ` C ) /\ ran G = ( ZZ>= ` C ) ) ) |
|
| 38 | 36 6 37 | mpbir2an | |- G : _om -1-1-onto-> ( ZZ>= ` C ) |