This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A helper lemma for the value of a recursive definition generator on upper integers (typically either NN or NN0 ) with characteristic function F ( x , y ) and initial value A . Normally F is a function on the partition, and A is a member of the partition. See also comment in om2uz0i . (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | |- C e. ZZ |
|
| om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
||
| uzrdg.1 | |- A e. _V |
||
| uzrdg.2 | |- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) |
||
| Assertion | om2uzrdg | |- ( B e. _om -> ( R ` B ) = <. ( G ` B ) , ( 2nd ` ( R ` B ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | |- C e. ZZ |
|
| 2 | om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
|
| 3 | uzrdg.1 | |- A e. _V |
|
| 4 | uzrdg.2 | |- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) |
|
| 5 | fveq2 | |- ( z = (/) -> ( R ` z ) = ( R ` (/) ) ) |
|
| 6 | fveq2 | |- ( z = (/) -> ( G ` z ) = ( G ` (/) ) ) |
|
| 7 | 2fveq3 | |- ( z = (/) -> ( 2nd ` ( R ` z ) ) = ( 2nd ` ( R ` (/) ) ) ) |
|
| 8 | 6 7 | opeq12d | |- ( z = (/) -> <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. = <. ( G ` (/) ) , ( 2nd ` ( R ` (/) ) ) >. ) |
| 9 | 5 8 | eqeq12d | |- ( z = (/) -> ( ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. <-> ( R ` (/) ) = <. ( G ` (/) ) , ( 2nd ` ( R ` (/) ) ) >. ) ) |
| 10 | fveq2 | |- ( z = v -> ( R ` z ) = ( R ` v ) ) |
|
| 11 | fveq2 | |- ( z = v -> ( G ` z ) = ( G ` v ) ) |
|
| 12 | 2fveq3 | |- ( z = v -> ( 2nd ` ( R ` z ) ) = ( 2nd ` ( R ` v ) ) ) |
|
| 13 | 11 12 | opeq12d | |- ( z = v -> <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) |
| 14 | 10 13 | eqeq12d | |- ( z = v -> ( ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. <-> ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) |
| 15 | fveq2 | |- ( z = suc v -> ( R ` z ) = ( R ` suc v ) ) |
|
| 16 | fveq2 | |- ( z = suc v -> ( G ` z ) = ( G ` suc v ) ) |
|
| 17 | 2fveq3 | |- ( z = suc v -> ( 2nd ` ( R ` z ) ) = ( 2nd ` ( R ` suc v ) ) ) |
|
| 18 | 16 17 | opeq12d | |- ( z = suc v -> <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) |
| 19 | 15 18 | eqeq12d | |- ( z = suc v -> ( ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. <-> ( R ` suc v ) = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) ) |
| 20 | fveq2 | |- ( z = B -> ( R ` z ) = ( R ` B ) ) |
|
| 21 | fveq2 | |- ( z = B -> ( G ` z ) = ( G ` B ) ) |
|
| 22 | 2fveq3 | |- ( z = B -> ( 2nd ` ( R ` z ) ) = ( 2nd ` ( R ` B ) ) ) |
|
| 23 | 21 22 | opeq12d | |- ( z = B -> <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. = <. ( G ` B ) , ( 2nd ` ( R ` B ) ) >. ) |
| 24 | 20 23 | eqeq12d | |- ( z = B -> ( ( R ` z ) = <. ( G ` z ) , ( 2nd ` ( R ` z ) ) >. <-> ( R ` B ) = <. ( G ` B ) , ( 2nd ` ( R ` B ) ) >. ) ) |
| 25 | 4 | fveq1i | |- ( R ` (/) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) |
| 26 | opex | |- <. C , A >. e. _V |
|
| 27 | fr0g | |- ( <. C , A >. e. _V -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) = <. C , A >. ) |
|
| 28 | 26 27 | ax-mp | |- ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) = <. C , A >. |
| 29 | 25 28 | eqtri | |- ( R ` (/) ) = <. C , A >. |
| 30 | 1 2 | om2uz0i | |- ( G ` (/) ) = C |
| 31 | 29 | fveq2i | |- ( 2nd ` ( R ` (/) ) ) = ( 2nd ` <. C , A >. ) |
| 32 | 1 | elexi | |- C e. _V |
| 33 | 32 3 | op2nd | |- ( 2nd ` <. C , A >. ) = A |
| 34 | 31 33 | eqtri | |- ( 2nd ` ( R ` (/) ) ) = A |
| 35 | 30 34 | opeq12i | |- <. ( G ` (/) ) , ( 2nd ` ( R ` (/) ) ) >. = <. C , A >. |
| 36 | 29 35 | eqtr4i | |- ( R ` (/) ) = <. ( G ` (/) ) , ( 2nd ` ( R ` (/) ) ) >. |
| 37 | frsuc | |- ( v e. _om -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc v ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` v ) ) ) |
|
| 38 | 4 | fveq1i | |- ( R ` suc v ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc v ) |
| 39 | 4 | fveq1i | |- ( R ` v ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` v ) |
| 40 | 39 | fveq2i | |- ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( R ` v ) ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` v ) ) |
| 41 | 37 38 40 | 3eqtr4g | |- ( v e. _om -> ( R ` suc v ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( R ` v ) ) ) |
| 42 | fveq2 | |- ( ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. -> ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( R ` v ) ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) ) |
|
| 43 | df-ov | |- ( ( G ` v ) ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ( 2nd ` ( R ` v ) ) ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) |
|
| 44 | fvex | |- ( G ` v ) e. _V |
|
| 45 | fvex | |- ( 2nd ` ( R ` v ) ) e. _V |
|
| 46 | oveq1 | |- ( w = ( G ` v ) -> ( w + 1 ) = ( ( G ` v ) + 1 ) ) |
|
| 47 | oveq1 | |- ( w = ( G ` v ) -> ( w F z ) = ( ( G ` v ) F z ) ) |
|
| 48 | 46 47 | opeq12d | |- ( w = ( G ` v ) -> <. ( w + 1 ) , ( w F z ) >. = <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F z ) >. ) |
| 49 | oveq2 | |- ( z = ( 2nd ` ( R ` v ) ) -> ( ( G ` v ) F z ) = ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) ) |
|
| 50 | 49 | opeq2d | |- ( z = ( 2nd ` ( R ` v ) ) -> <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F z ) >. = <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) |
| 51 | oveq1 | |- ( x = w -> ( x + 1 ) = ( w + 1 ) ) |
|
| 52 | oveq1 | |- ( x = w -> ( x F y ) = ( w F y ) ) |
|
| 53 | 51 52 | opeq12d | |- ( x = w -> <. ( x + 1 ) , ( x F y ) >. = <. ( w + 1 ) , ( w F y ) >. ) |
| 54 | oveq2 | |- ( y = z -> ( w F y ) = ( w F z ) ) |
|
| 55 | 54 | opeq2d | |- ( y = z -> <. ( w + 1 ) , ( w F y ) >. = <. ( w + 1 ) , ( w F z ) >. ) |
| 56 | 53 55 | cbvmpov | |- ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) = ( w e. _V , z e. _V |-> <. ( w + 1 ) , ( w F z ) >. ) |
| 57 | opex | |- <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. e. _V |
|
| 58 | 48 50 56 57 | ovmpo | |- ( ( ( G ` v ) e. _V /\ ( 2nd ` ( R ` v ) ) e. _V ) -> ( ( G ` v ) ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ( 2nd ` ( R ` v ) ) ) = <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) |
| 59 | 44 45 58 | mp2an | |- ( ( G ` v ) ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ( 2nd ` ( R ` v ) ) ) = <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. |
| 60 | 43 59 | eqtr3i | |- ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) = <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. |
| 61 | 42 60 | eqtrdi | |- ( ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. -> ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( R ` v ) ) = <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) |
| 62 | 41 61 | sylan9eq | |- ( ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) -> ( R ` suc v ) = <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) |
| 63 | 1 2 | om2uzsuci | |- ( v e. _om -> ( G ` suc v ) = ( ( G ` v ) + 1 ) ) |
| 64 | 63 | adantr | |- ( ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) -> ( G ` suc v ) = ( ( G ` v ) + 1 ) ) |
| 65 | 62 | fveq2d | |- ( ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) -> ( 2nd ` ( R ` suc v ) ) = ( 2nd ` <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) ) |
| 66 | ovex | |- ( ( G ` v ) + 1 ) e. _V |
|
| 67 | ovex | |- ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) e. _V |
|
| 68 | 66 67 | op2nd | |- ( 2nd ` <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) = ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) |
| 69 | 65 68 | eqtrdi | |- ( ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) -> ( 2nd ` ( R ` suc v ) ) = ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) ) |
| 70 | 64 69 | opeq12d | |- ( ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) -> <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. = <. ( ( G ` v ) + 1 ) , ( ( G ` v ) F ( 2nd ` ( R ` v ) ) ) >. ) |
| 71 | 62 70 | eqtr4d | |- ( ( v e. _om /\ ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. ) -> ( R ` suc v ) = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) |
| 72 | 71 | ex | |- ( v e. _om -> ( ( R ` v ) = <. ( G ` v ) , ( 2nd ` ( R ` v ) ) >. -> ( R ` suc v ) = <. ( G ` suc v ) , ( 2nd ` ( R ` suc v ) ) >. ) ) |
| 73 | 9 14 19 24 36 72 | finds | |- ( B e. _om -> ( R ` B ) = <. ( G ` B ) , ( 2nd ` ( R ` B ) ) >. ) |