This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: < is a well-founded relation on any sequence of upper integers. (Contributed by Andrew Salmon, 13-Nov-2011) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltweuz | |- < We ( ZZ>= ` A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom | |- Ord _om |
|
| 2 | ordwe | |- ( Ord _om -> _E We _om ) |
|
| 3 | 1 2 | ax-mp | |- _E We _om |
| 4 | rdgeq2 | |- ( A = if ( A e. ZZ , A , 0 ) -> rec ( ( x e. _V |-> ( x + 1 ) ) , A ) = rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) ) |
|
| 5 | 4 | reseq1d | |- ( A = if ( A e. ZZ , A , 0 ) -> ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) ) |
| 6 | isoeq1 | |- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` A ) ) <-> ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` A ) ) ) ) |
|
| 7 | 5 6 | syl | |- ( A = if ( A e. ZZ , A , 0 ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` A ) ) <-> ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` A ) ) ) ) |
| 8 | fveq2 | |- ( A = if ( A e. ZZ , A , 0 ) -> ( ZZ>= ` A ) = ( ZZ>= ` if ( A e. ZZ , A , 0 ) ) ) |
|
| 9 | isoeq5 | |- ( ( ZZ>= ` A ) = ( ZZ>= ` if ( A e. ZZ , A , 0 ) ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` A ) ) <-> ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` if ( A e. ZZ , A , 0 ) ) ) ) ) |
|
| 10 | 8 9 | syl | |- ( A = if ( A e. ZZ , A , 0 ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` A ) ) <-> ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` if ( A e. ZZ , A , 0 ) ) ) ) ) |
| 11 | 0z | |- 0 e. ZZ |
|
| 12 | 11 | elimel | |- if ( A e. ZZ , A , 0 ) e. ZZ |
| 13 | eqid | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) |
|
| 14 | 12 13 | om2uzisoi | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` if ( A e. ZZ , A , 0 ) ) ) |
| 15 | 7 10 14 | dedth2v | |- ( A e. ZZ -> ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` A ) ) ) |
| 16 | isocnv | |- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` A ) ) -> `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) Isom < , _E ( ( ZZ>= ` A ) , _om ) ) |
|
| 17 | 15 16 | syl | |- ( A e. ZZ -> `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) Isom < , _E ( ( ZZ>= ` A ) , _om ) ) |
| 18 | dmres | |- dom ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) = ( _om i^i dom rec ( ( x e. _V |-> ( x + 1 ) ) , A ) ) |
|
| 19 | omex | |- _om e. _V |
|
| 20 | 19 | inex1 | |- ( _om i^i dom rec ( ( x e. _V |-> ( x + 1 ) ) , A ) ) e. _V |
| 21 | 18 20 | eqeltri | |- dom ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) e. _V |
| 22 | cnvimass | |- ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) " y ) C_ dom ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) |
|
| 23 | 21 22 | ssexi | |- ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) " y ) e. _V |
| 24 | 23 | ax-gen | |- A. y ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) " y ) e. _V |
| 25 | isowe2 | |- ( ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) Isom < , _E ( ( ZZ>= ` A ) , _om ) /\ A. y ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) " y ) e. _V ) -> ( _E We _om -> < We ( ZZ>= ` A ) ) ) |
|
| 26 | 17 24 25 | sylancl | |- ( A e. ZZ -> ( _E We _om -> < We ( ZZ>= ` A ) ) ) |
| 27 | 3 26 | mpi | |- ( A e. ZZ -> < We ( ZZ>= ` A ) ) |
| 28 | uzf | |- ZZ>= : ZZ --> ~P ZZ |
|
| 29 | 28 | fdmi | |- dom ZZ>= = ZZ |
| 30 | 27 29 | eleq2s | |- ( A e. dom ZZ>= -> < We ( ZZ>= ` A ) ) |
| 31 | we0 | |- < We (/) |
|
| 32 | ndmfv | |- ( -. A e. dom ZZ>= -> ( ZZ>= ` A ) = (/) ) |
|
| 33 | weeq2 | |- ( ( ZZ>= ` A ) = (/) -> ( < We ( ZZ>= ` A ) <-> < We (/) ) ) |
|
| 34 | 32 33 | syl | |- ( -. A e. dom ZZ>= -> ( < We ( ZZ>= ` A ) <-> < We (/) ) ) |
| 35 | 31 34 | mpbiri | |- ( -. A e. dom ZZ>= -> < We ( ZZ>= ` A ) ) |
| 36 | 30 35 | pm2.61i | |- < We ( ZZ>= ` A ) |