This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of G (see om2uz0i ) at a successor. (Contributed by NM, 3-Oct-2004) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | |- C e. ZZ |
|
| om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
||
| Assertion | om2uzsuci | |- ( A e. _om -> ( G ` suc A ) = ( ( G ` A ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | |- C e. ZZ |
|
| 2 | om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
|
| 3 | suceq | |- ( z = A -> suc z = suc A ) |
|
| 4 | 3 | fveq2d | |- ( z = A -> ( G ` suc z ) = ( G ` suc A ) ) |
| 5 | fveq2 | |- ( z = A -> ( G ` z ) = ( G ` A ) ) |
|
| 6 | 5 | oveq1d | |- ( z = A -> ( ( G ` z ) + 1 ) = ( ( G ` A ) + 1 ) ) |
| 7 | 4 6 | eqeq12d | |- ( z = A -> ( ( G ` suc z ) = ( ( G ` z ) + 1 ) <-> ( G ` suc A ) = ( ( G ` A ) + 1 ) ) ) |
| 8 | ovex | |- ( ( G ` z ) + 1 ) e. _V |
|
| 9 | oveq1 | |- ( y = x -> ( y + 1 ) = ( x + 1 ) ) |
|
| 10 | oveq1 | |- ( y = ( G ` z ) -> ( y + 1 ) = ( ( G ` z ) + 1 ) ) |
|
| 11 | 2 9 10 | frsucmpt2 | |- ( ( z e. _om /\ ( ( G ` z ) + 1 ) e. _V ) -> ( G ` suc z ) = ( ( G ` z ) + 1 ) ) |
| 12 | 8 11 | mpan2 | |- ( z e. _om -> ( G ` suc z ) = ( ( G ` z ) + 1 ) ) |
| 13 | 7 12 | vtoclga | |- ( A e. _om -> ( G ` suc A ) = ( ( G ` A ) + 1 ) ) |