This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A norm turns a group into a normed group iff the generated metric is in fact a metric. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngngp2.t | |- T = ( G toNrmGrp N ) |
|
| tngngp2.x | |- X = ( Base ` G ) |
||
| tngngp2.d | |- D = ( dist ` T ) |
||
| Assertion | tngngp2 | |- ( N : X --> RR -> ( T e. NrmGrp <-> ( G e. Grp /\ D e. ( Met ` X ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngngp2.t | |- T = ( G toNrmGrp N ) |
|
| 2 | tngngp2.x | |- X = ( Base ` G ) |
|
| 3 | tngngp2.d | |- D = ( dist ` T ) |
|
| 4 | ngpgrp | |- ( T e. NrmGrp -> T e. Grp ) |
|
| 5 | 2 | fvexi | |- X e. _V |
| 6 | reex | |- RR e. _V |
|
| 7 | fex2 | |- ( ( N : X --> RR /\ X e. _V /\ RR e. _V ) -> N e. _V ) |
|
| 8 | 5 6 7 | mp3an23 | |- ( N : X --> RR -> N e. _V ) |
| 9 | 2 | a1i | |- ( N e. _V -> X = ( Base ` G ) ) |
| 10 | 1 2 | tngbas | |- ( N e. _V -> X = ( Base ` T ) ) |
| 11 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 12 | 1 11 | tngplusg | |- ( N e. _V -> ( +g ` G ) = ( +g ` T ) ) |
| 13 | 12 | oveqdr | |- ( ( N e. _V /\ ( x e. X /\ y e. X ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` T ) y ) ) |
| 14 | 9 10 13 | grppropd | |- ( N e. _V -> ( G e. Grp <-> T e. Grp ) ) |
| 15 | 8 14 | syl | |- ( N : X --> RR -> ( G e. Grp <-> T e. Grp ) ) |
| 16 | 4 15 | imbitrrid | |- ( N : X --> RR -> ( T e. NrmGrp -> G e. Grp ) ) |
| 17 | 16 | imp | |- ( ( N : X --> RR /\ T e. NrmGrp ) -> G e. Grp ) |
| 18 | ngpms | |- ( T e. NrmGrp -> T e. MetSp ) |
|
| 19 | 18 | adantl | |- ( ( N : X --> RR /\ T e. NrmGrp ) -> T e. MetSp ) |
| 20 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 21 | 20 3 | msmet2 | |- ( T e. MetSp -> ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( Met ` ( Base ` T ) ) ) |
| 22 | 19 21 | syl | |- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( Met ` ( Base ` T ) ) ) |
| 23 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 24 | 2 23 | grpsubf | |- ( G e. Grp -> ( -g ` G ) : ( X X. X ) --> X ) |
| 25 | 17 24 | syl | |- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( -g ` G ) : ( X X. X ) --> X ) |
| 26 | fco | |- ( ( N : X --> RR /\ ( -g ` G ) : ( X X. X ) --> X ) -> ( N o. ( -g ` G ) ) : ( X X. X ) --> RR ) |
|
| 27 | 25 26 | syldan | |- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( N o. ( -g ` G ) ) : ( X X. X ) --> RR ) |
| 28 | 8 | adantr | |- ( ( N : X --> RR /\ T e. NrmGrp ) -> N e. _V ) |
| 29 | 1 23 | tngds | |- ( N e. _V -> ( N o. ( -g ` G ) ) = ( dist ` T ) ) |
| 30 | 28 29 | syl | |- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( N o. ( -g ` G ) ) = ( dist ` T ) ) |
| 31 | 3 30 | eqtr4id | |- ( ( N : X --> RR /\ T e. NrmGrp ) -> D = ( N o. ( -g ` G ) ) ) |
| 32 | 31 | feq1d | |- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( D : ( X X. X ) --> RR <-> ( N o. ( -g ` G ) ) : ( X X. X ) --> RR ) ) |
| 33 | 27 32 | mpbird | |- ( ( N : X --> RR /\ T e. NrmGrp ) -> D : ( X X. X ) --> RR ) |
| 34 | ffn | |- ( D : ( X X. X ) --> RR -> D Fn ( X X. X ) ) |
|
| 35 | fnresdm | |- ( D Fn ( X X. X ) -> ( D |` ( X X. X ) ) = D ) |
|
| 36 | 33 34 35 | 3syl | |- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( D |` ( X X. X ) ) = D ) |
| 37 | 28 10 | syl | |- ( ( N : X --> RR /\ T e. NrmGrp ) -> X = ( Base ` T ) ) |
| 38 | 37 | sqxpeqd | |- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( X X. X ) = ( ( Base ` T ) X. ( Base ` T ) ) ) |
| 39 | 38 | reseq2d | |- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( D |` ( X X. X ) ) = ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) |
| 40 | 36 39 | eqtr3d | |- ( ( N : X --> RR /\ T e. NrmGrp ) -> D = ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) |
| 41 | 37 | fveq2d | |- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( Met ` X ) = ( Met ` ( Base ` T ) ) ) |
| 42 | 22 40 41 | 3eltr4d | |- ( ( N : X --> RR /\ T e. NrmGrp ) -> D e. ( Met ` X ) ) |
| 43 | 17 42 | jca | |- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( G e. Grp /\ D e. ( Met ` X ) ) ) |
| 44 | 15 | biimpa | |- ( ( N : X --> RR /\ G e. Grp ) -> T e. Grp ) |
| 45 | 44 | adantrr | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> T e. Grp ) |
| 46 | simprr | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> D e. ( Met ` X ) ) |
|
| 47 | 8 | adantr | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> N e. _V ) |
| 48 | 47 10 | syl | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> X = ( Base ` T ) ) |
| 49 | 48 | fveq2d | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( Met ` X ) = ( Met ` ( Base ` T ) ) ) |
| 50 | 46 49 | eleqtrd | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> D e. ( Met ` ( Base ` T ) ) ) |
| 51 | metf | |- ( D e. ( Met ` ( Base ` T ) ) -> D : ( ( Base ` T ) X. ( Base ` T ) ) --> RR ) |
|
| 52 | ffn | |- ( D : ( ( Base ` T ) X. ( Base ` T ) ) --> RR -> D Fn ( ( Base ` T ) X. ( Base ` T ) ) ) |
|
| 53 | fnresdm | |- ( D Fn ( ( Base ` T ) X. ( Base ` T ) ) -> ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) = D ) |
|
| 54 | 50 51 52 53 | 4syl | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) = D ) |
| 55 | 54 50 | eqeltrd | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( Met ` ( Base ` T ) ) ) |
| 56 | 54 | fveq2d | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( MetOpen ` ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) = ( MetOpen ` D ) ) |
| 57 | simprl | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> G e. Grp ) |
|
| 58 | eqid | |- ( MetOpen ` D ) = ( MetOpen ` D ) |
|
| 59 | 1 3 58 | tngtopn | |- ( ( G e. Grp /\ N e. _V ) -> ( MetOpen ` D ) = ( TopOpen ` T ) ) |
| 60 | 57 47 59 | syl2anc | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( MetOpen ` D ) = ( TopOpen ` T ) ) |
| 61 | 56 60 | eqtr2d | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( TopOpen ` T ) = ( MetOpen ` ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) ) |
| 62 | eqid | |- ( TopOpen ` T ) = ( TopOpen ` T ) |
|
| 63 | 3 | reseq1i | |- ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) = ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) |
| 64 | 62 20 63 | isms2 | |- ( T e. MetSp <-> ( ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( Met ` ( Base ` T ) ) /\ ( TopOpen ` T ) = ( MetOpen ` ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) ) ) |
| 65 | 55 61 64 | sylanbrc | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> T e. MetSp ) |
| 66 | simpl | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> N : X --> RR ) |
|
| 67 | 1 2 6 | tngnm | |- ( ( G e. Grp /\ N : X --> RR ) -> N = ( norm ` T ) ) |
| 68 | 57 66 67 | syl2anc | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> N = ( norm ` T ) ) |
| 69 | 9 10 | eqtr3d | |- ( N e. _V -> ( Base ` G ) = ( Base ` T ) ) |
| 70 | 69 12 | grpsubpropd | |- ( N e. _V -> ( -g ` G ) = ( -g ` T ) ) |
| 71 | 47 70 | syl | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( -g ` G ) = ( -g ` T ) ) |
| 72 | 68 71 | coeq12d | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( N o. ( -g ` G ) ) = ( ( norm ` T ) o. ( -g ` T ) ) ) |
| 73 | 47 29 | syl | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( N o. ( -g ` G ) ) = ( dist ` T ) ) |
| 74 | 72 73 | eqtr3d | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( ( norm ` T ) o. ( -g ` T ) ) = ( dist ` T ) ) |
| 75 | eqimss | |- ( ( ( norm ` T ) o. ( -g ` T ) ) = ( dist ` T ) -> ( ( norm ` T ) o. ( -g ` T ) ) C_ ( dist ` T ) ) |
|
| 76 | 74 75 | syl | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( ( norm ` T ) o. ( -g ` T ) ) C_ ( dist ` T ) ) |
| 77 | eqid | |- ( norm ` T ) = ( norm ` T ) |
|
| 78 | eqid | |- ( -g ` T ) = ( -g ` T ) |
|
| 79 | eqid | |- ( dist ` T ) = ( dist ` T ) |
|
| 80 | 77 78 79 | isngp | |- ( T e. NrmGrp <-> ( T e. Grp /\ T e. MetSp /\ ( ( norm ` T ) o. ( -g ` T ) ) C_ ( dist ` T ) ) ) |
| 81 | 45 65 76 80 | syl3anbrc | |- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> T e. NrmGrp ) |
| 82 | 43 81 | impbida | |- ( N : X --> RR -> ( T e. NrmGrp <-> ( G e. Grp /\ D e. ( Met ` X ) ) ) ) |