This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate " <. X , D >. is a metric space" with underlying set X and distance function D . (Contributed by NM, 27-Aug-2006) (Revised by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isms.j | |- J = ( TopOpen ` K ) |
|
| isms.x | |- X = ( Base ` K ) |
||
| isms.d | |- D = ( ( dist ` K ) |` ( X X. X ) ) |
||
| Assertion | isms2 | |- ( K e. MetSp <-> ( D e. ( Met ` X ) /\ J = ( MetOpen ` D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isms.j | |- J = ( TopOpen ` K ) |
|
| 2 | isms.x | |- X = ( Base ` K ) |
|
| 3 | isms.d | |- D = ( ( dist ` K ) |` ( X X. X ) ) |
|
| 4 | 1 2 3 | isxms2 | |- ( K e. *MetSp <-> ( D e. ( *Met ` X ) /\ J = ( MetOpen ` D ) ) ) |
| 5 | 4 | anbi1i | |- ( ( K e. *MetSp /\ D e. ( Met ` X ) ) <-> ( ( D e. ( *Met ` X ) /\ J = ( MetOpen ` D ) ) /\ D e. ( Met ` X ) ) ) |
| 6 | 1 2 3 | isms | |- ( K e. MetSp <-> ( K e. *MetSp /\ D e. ( Met ` X ) ) ) |
| 7 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 8 | 7 | pm4.71ri | |- ( D e. ( Met ` X ) <-> ( D e. ( *Met ` X ) /\ D e. ( Met ` X ) ) ) |
| 9 | 8 | anbi1i | |- ( ( D e. ( Met ` X ) /\ J = ( MetOpen ` D ) ) <-> ( ( D e. ( *Met ` X ) /\ D e. ( Met ` X ) ) /\ J = ( MetOpen ` D ) ) ) |
| 10 | an32 | |- ( ( ( D e. ( *Met ` X ) /\ D e. ( Met ` X ) ) /\ J = ( MetOpen ` D ) ) <-> ( ( D e. ( *Met ` X ) /\ J = ( MetOpen ` D ) ) /\ D e. ( Met ` X ) ) ) |
|
| 11 | 9 10 | bitri | |- ( ( D e. ( Met ` X ) /\ J = ( MetOpen ` D ) ) <-> ( ( D e. ( *Met ` X ) /\ J = ( MetOpen ` D ) ) /\ D e. ( Met ` X ) ) ) |
| 12 | 5 6 11 | 3bitr4i | |- ( K e. MetSp <-> ( D e. ( Met ` X ) /\ J = ( MetOpen ` D ) ) ) |