This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isngp.n | |- N = ( norm ` G ) |
|
| isngp.z | |- .- = ( -g ` G ) |
||
| isngp.d | |- D = ( dist ` G ) |
||
| Assertion | isngp | |- ( G e. NrmGrp <-> ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) C_ D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isngp.n | |- N = ( norm ` G ) |
|
| 2 | isngp.z | |- .- = ( -g ` G ) |
|
| 3 | isngp.d | |- D = ( dist ` G ) |
|
| 4 | elin | |- ( G e. ( Grp i^i MetSp ) <-> ( G e. Grp /\ G e. MetSp ) ) |
|
| 5 | 4 | anbi1i | |- ( ( G e. ( Grp i^i MetSp ) /\ ( N o. .- ) C_ D ) <-> ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) ) |
| 6 | fveq2 | |- ( g = G -> ( norm ` g ) = ( norm ` G ) ) |
|
| 7 | 6 1 | eqtr4di | |- ( g = G -> ( norm ` g ) = N ) |
| 8 | fveq2 | |- ( g = G -> ( -g ` g ) = ( -g ` G ) ) |
|
| 9 | 8 2 | eqtr4di | |- ( g = G -> ( -g ` g ) = .- ) |
| 10 | 7 9 | coeq12d | |- ( g = G -> ( ( norm ` g ) o. ( -g ` g ) ) = ( N o. .- ) ) |
| 11 | fveq2 | |- ( g = G -> ( dist ` g ) = ( dist ` G ) ) |
|
| 12 | 11 3 | eqtr4di | |- ( g = G -> ( dist ` g ) = D ) |
| 13 | 10 12 | sseq12d | |- ( g = G -> ( ( ( norm ` g ) o. ( -g ` g ) ) C_ ( dist ` g ) <-> ( N o. .- ) C_ D ) ) |
| 14 | df-ngp | |- NrmGrp = { g e. ( Grp i^i MetSp ) | ( ( norm ` g ) o. ( -g ` g ) ) C_ ( dist ` g ) } |
|
| 15 | 13 14 | elrab2 | |- ( G e. NrmGrp <-> ( G e. ( Grp i^i MetSp ) /\ ( N o. .- ) C_ D ) ) |
| 16 | df-3an | |- ( ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) C_ D ) <-> ( ( G e. Grp /\ G e. MetSp ) /\ ( N o. .- ) C_ D ) ) |
|
| 17 | 5 15 16 | 3bitr4i | |- ( G e. NrmGrp <-> ( G e. Grp /\ G e. MetSp /\ ( N o. .- ) C_ D ) ) |