This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015) (Proof shortened by AV, 29-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngbas.t | |- T = ( G toNrmGrp N ) |
|
| tngds.2 | |- .- = ( -g ` G ) |
||
| Assertion | tngds | |- ( N e. V -> ( N o. .- ) = ( dist ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngbas.t | |- T = ( G toNrmGrp N ) |
|
| 2 | tngds.2 | |- .- = ( -g ` G ) |
|
| 3 | dsid | |- dist = Slot ( dist ` ndx ) |
|
| 4 | dsndxntsetndx | |- ( dist ` ndx ) =/= ( TopSet ` ndx ) |
|
| 5 | 3 4 | setsnid | |- ( dist ` ( G sSet <. ( dist ` ndx ) , ( N o. .- ) >. ) ) = ( dist ` ( ( G sSet <. ( dist ` ndx ) , ( N o. .- ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( N o. .- ) ) >. ) ) |
| 6 | 2 | fvexi | |- .- e. _V |
| 7 | coexg | |- ( ( N e. V /\ .- e. _V ) -> ( N o. .- ) e. _V ) |
|
| 8 | 6 7 | mpan2 | |- ( N e. V -> ( N o. .- ) e. _V ) |
| 9 | 3 | setsid | |- ( ( G e. _V /\ ( N o. .- ) e. _V ) -> ( N o. .- ) = ( dist ` ( G sSet <. ( dist ` ndx ) , ( N o. .- ) >. ) ) ) |
| 10 | 8 9 | sylan2 | |- ( ( G e. _V /\ N e. V ) -> ( N o. .- ) = ( dist ` ( G sSet <. ( dist ` ndx ) , ( N o. .- ) >. ) ) ) |
| 11 | eqid | |- ( N o. .- ) = ( N o. .- ) |
|
| 12 | eqid | |- ( MetOpen ` ( N o. .- ) ) = ( MetOpen ` ( N o. .- ) ) |
|
| 13 | 1 2 11 12 | tngval | |- ( ( G e. _V /\ N e. V ) -> T = ( ( G sSet <. ( dist ` ndx ) , ( N o. .- ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( N o. .- ) ) >. ) ) |
| 14 | 13 | fveq2d | |- ( ( G e. _V /\ N e. V ) -> ( dist ` T ) = ( dist ` ( ( G sSet <. ( dist ` ndx ) , ( N o. .- ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( N o. .- ) ) >. ) ) ) |
| 15 | 5 10 14 | 3eqtr4a | |- ( ( G e. _V /\ N e. V ) -> ( N o. .- ) = ( dist ` T ) ) |
| 16 | co02 | |- ( N o. (/) ) = (/) |
|
| 17 | 3 | str0 | |- (/) = ( dist ` (/) ) |
| 18 | 16 17 | eqtri | |- ( N o. (/) ) = ( dist ` (/) ) |
| 19 | fvprc | |- ( -. G e. _V -> ( -g ` G ) = (/) ) |
|
| 20 | 2 19 | eqtrid | |- ( -. G e. _V -> .- = (/) ) |
| 21 | 20 | coeq2d | |- ( -. G e. _V -> ( N o. .- ) = ( N o. (/) ) ) |
| 22 | reldmtng | |- Rel dom toNrmGrp |
|
| 23 | 22 | ovprc1 | |- ( -. G e. _V -> ( G toNrmGrp N ) = (/) ) |
| 24 | 1 23 | eqtrid | |- ( -. G e. _V -> T = (/) ) |
| 25 | 24 | fveq2d | |- ( -. G e. _V -> ( dist ` T ) = ( dist ` (/) ) ) |
| 26 | 18 21 25 | 3eqtr4a | |- ( -. G e. _V -> ( N o. .- ) = ( dist ` T ) ) |
| 27 | 26 | adantr | |- ( ( -. G e. _V /\ N e. V ) -> ( N o. .- ) = ( dist ` T ) ) |
| 28 | 15 27 | pm2.61ian | |- ( N e. V -> ( N o. .- ) = ( dist ` T ) ) |