This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngbas.t | |- T = ( G toNrmGrp N ) |
|
| tngtset.2 | |- D = ( dist ` T ) |
||
| tngtset.3 | |- J = ( MetOpen ` D ) |
||
| Assertion | tngtopn | |- ( ( G e. V /\ N e. W ) -> J = ( TopOpen ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngbas.t | |- T = ( G toNrmGrp N ) |
|
| 2 | tngtset.2 | |- D = ( dist ` T ) |
|
| 3 | tngtset.3 | |- J = ( MetOpen ` D ) |
|
| 4 | 1 2 3 | tngtset | |- ( ( G e. V /\ N e. W ) -> J = ( TopSet ` T ) ) |
| 5 | df-mopn | |- MetOpen = ( x e. U. ran *Met |-> ( topGen ` ran ( ball ` x ) ) ) |
|
| 6 | 5 | dmmptss | |- dom MetOpen C_ U. ran *Met |
| 7 | 6 | sseli | |- ( D e. dom MetOpen -> D e. U. ran *Met ) |
| 8 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 9 | 1 8 | tngds | |- ( N e. W -> ( N o. ( -g ` G ) ) = ( dist ` T ) ) |
| 10 | 9 2 | eqtr4di | |- ( N e. W -> ( N o. ( -g ` G ) ) = D ) |
| 11 | 10 | adantl | |- ( ( G e. V /\ N e. W ) -> ( N o. ( -g ` G ) ) = D ) |
| 12 | 11 | dmeqd | |- ( ( G e. V /\ N e. W ) -> dom ( N o. ( -g ` G ) ) = dom D ) |
| 13 | dmcoss | |- dom ( N o. ( -g ` G ) ) C_ dom ( -g ` G ) |
|
| 14 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 15 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 16 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 17 | 14 15 16 8 | grpsubfval | |- ( -g ` G ) = ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> ( x ( +g ` G ) ( ( invg ` G ) ` y ) ) ) |
| 18 | ovex | |- ( x ( +g ` G ) ( ( invg ` G ) ` y ) ) e. _V |
|
| 19 | 17 18 | dmmpo | |- dom ( -g ` G ) = ( ( Base ` G ) X. ( Base ` G ) ) |
| 20 | 13 19 | sseqtri | |- dom ( N o. ( -g ` G ) ) C_ ( ( Base ` G ) X. ( Base ` G ) ) |
| 21 | 12 20 | eqsstrrdi | |- ( ( G e. V /\ N e. W ) -> dom D C_ ( ( Base ` G ) X. ( Base ` G ) ) ) |
| 22 | 21 | adantr | |- ( ( ( G e. V /\ N e. W ) /\ D e. U. ran *Met ) -> dom D C_ ( ( Base ` G ) X. ( Base ` G ) ) ) |
| 23 | dmss | |- ( dom D C_ ( ( Base ` G ) X. ( Base ` G ) ) -> dom dom D C_ dom ( ( Base ` G ) X. ( Base ` G ) ) ) |
|
| 24 | 22 23 | syl | |- ( ( ( G e. V /\ N e. W ) /\ D e. U. ran *Met ) -> dom dom D C_ dom ( ( Base ` G ) X. ( Base ` G ) ) ) |
| 25 | dmxpid | |- dom ( ( Base ` G ) X. ( Base ` G ) ) = ( Base ` G ) |
|
| 26 | 24 25 | sseqtrdi | |- ( ( ( G e. V /\ N e. W ) /\ D e. U. ran *Met ) -> dom dom D C_ ( Base ` G ) ) |
| 27 | simpr | |- ( ( ( G e. V /\ N e. W ) /\ D e. U. ran *Met ) -> D e. U. ran *Met ) |
|
| 28 | xmetunirn | |- ( D e. U. ran *Met <-> D e. ( *Met ` dom dom D ) ) |
|
| 29 | 27 28 | sylib | |- ( ( ( G e. V /\ N e. W ) /\ D e. U. ran *Met ) -> D e. ( *Met ` dom dom D ) ) |
| 30 | eqid | |- ( MetOpen ` D ) = ( MetOpen ` D ) |
|
| 31 | 30 | mopnuni | |- ( D e. ( *Met ` dom dom D ) -> dom dom D = U. ( MetOpen ` D ) ) |
| 32 | 29 31 | syl | |- ( ( ( G e. V /\ N e. W ) /\ D e. U. ran *Met ) -> dom dom D = U. ( MetOpen ` D ) ) |
| 33 | 1 14 | tngbas | |- ( N e. W -> ( Base ` G ) = ( Base ` T ) ) |
| 34 | 33 | ad2antlr | |- ( ( ( G e. V /\ N e. W ) /\ D e. U. ran *Met ) -> ( Base ` G ) = ( Base ` T ) ) |
| 35 | 26 32 34 | 3sstr3d | |- ( ( ( G e. V /\ N e. W ) /\ D e. U. ran *Met ) -> U. ( MetOpen ` D ) C_ ( Base ` T ) ) |
| 36 | sspwuni | |- ( ( MetOpen ` D ) C_ ~P ( Base ` T ) <-> U. ( MetOpen ` D ) C_ ( Base ` T ) ) |
|
| 37 | 35 36 | sylibr | |- ( ( ( G e. V /\ N e. W ) /\ D e. U. ran *Met ) -> ( MetOpen ` D ) C_ ~P ( Base ` T ) ) |
| 38 | 37 | ex | |- ( ( G e. V /\ N e. W ) -> ( D e. U. ran *Met -> ( MetOpen ` D ) C_ ~P ( Base ` T ) ) ) |
| 39 | 7 38 | syl5 | |- ( ( G e. V /\ N e. W ) -> ( D e. dom MetOpen -> ( MetOpen ` D ) C_ ~P ( Base ` T ) ) ) |
| 40 | ndmfv | |- ( -. D e. dom MetOpen -> ( MetOpen ` D ) = (/) ) |
|
| 41 | 0ss | |- (/) C_ ~P ( Base ` T ) |
|
| 42 | 40 41 | eqsstrdi | |- ( -. D e. dom MetOpen -> ( MetOpen ` D ) C_ ~P ( Base ` T ) ) |
| 43 | 39 42 | pm2.61d1 | |- ( ( G e. V /\ N e. W ) -> ( MetOpen ` D ) C_ ~P ( Base ` T ) ) |
| 44 | 3 43 | eqsstrid | |- ( ( G e. V /\ N e. W ) -> J C_ ~P ( Base ` T ) ) |
| 45 | 4 44 | eqsstrrd | |- ( ( G e. V /\ N e. W ) -> ( TopSet ` T ) C_ ~P ( Base ` T ) ) |
| 46 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 47 | eqid | |- ( TopSet ` T ) = ( TopSet ` T ) |
|
| 48 | 46 47 | topnid | |- ( ( TopSet ` T ) C_ ~P ( Base ` T ) -> ( TopSet ` T ) = ( TopOpen ` T ) ) |
| 49 | 45 48 | syl | |- ( ( G e. V /\ N e. W ) -> ( TopSet ` T ) = ( TopOpen ` T ) ) |
| 50 | 4 49 | eqtrd | |- ( ( G e. V /\ N e. W ) -> J = ( TopOpen ` T ) ) |