This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grppropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| grppropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| grppropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| Assertion | grppropd | |- ( ph -> ( K e. Grp <-> L e. Grp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grppropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | grppropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | grppropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 4 | 1 2 3 | mndpropd | |- ( ph -> ( K e. Mnd <-> L e. Mnd ) ) |
| 5 | 1 2 3 | grpidpropd | |- ( ph -> ( 0g ` K ) = ( 0g ` L ) ) |
| 6 | 5 | adantr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( 0g ` K ) = ( 0g ` L ) ) |
| 7 | 3 6 | eqeq12d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( x ( +g ` K ) y ) = ( 0g ` K ) <-> ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) |
| 8 | 7 | anass1rs | |- ( ( ( ph /\ y e. B ) /\ x e. B ) -> ( ( x ( +g ` K ) y ) = ( 0g ` K ) <-> ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) |
| 9 | 8 | rexbidva | |- ( ( ph /\ y e. B ) -> ( E. x e. B ( x ( +g ` K ) y ) = ( 0g ` K ) <-> E. x e. B ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) |
| 10 | 9 | ralbidva | |- ( ph -> ( A. y e. B E. x e. B ( x ( +g ` K ) y ) = ( 0g ` K ) <-> A. y e. B E. x e. B ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) |
| 11 | 1 | rexeqdv | |- ( ph -> ( E. x e. B ( x ( +g ` K ) y ) = ( 0g ` K ) <-> E. x e. ( Base ` K ) ( x ( +g ` K ) y ) = ( 0g ` K ) ) ) |
| 12 | 1 11 | raleqbidv | |- ( ph -> ( A. y e. B E. x e. B ( x ( +g ` K ) y ) = ( 0g ` K ) <-> A. y e. ( Base ` K ) E. x e. ( Base ` K ) ( x ( +g ` K ) y ) = ( 0g ` K ) ) ) |
| 13 | 2 | rexeqdv | |- ( ph -> ( E. x e. B ( x ( +g ` L ) y ) = ( 0g ` L ) <-> E. x e. ( Base ` L ) ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) |
| 14 | 2 13 | raleqbidv | |- ( ph -> ( A. y e. B E. x e. B ( x ( +g ` L ) y ) = ( 0g ` L ) <-> A. y e. ( Base ` L ) E. x e. ( Base ` L ) ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) |
| 15 | 10 12 14 | 3bitr3d | |- ( ph -> ( A. y e. ( Base ` K ) E. x e. ( Base ` K ) ( x ( +g ` K ) y ) = ( 0g ` K ) <-> A. y e. ( Base ` L ) E. x e. ( Base ` L ) ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) |
| 16 | 4 15 | anbi12d | |- ( ph -> ( ( K e. Mnd /\ A. y e. ( Base ` K ) E. x e. ( Base ` K ) ( x ( +g ` K ) y ) = ( 0g ` K ) ) <-> ( L e. Mnd /\ A. y e. ( Base ` L ) E. x e. ( Base ` L ) ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) ) |
| 17 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 18 | eqid | |- ( +g ` K ) = ( +g ` K ) |
|
| 19 | eqid | |- ( 0g ` K ) = ( 0g ` K ) |
|
| 20 | 17 18 19 | isgrp | |- ( K e. Grp <-> ( K e. Mnd /\ A. y e. ( Base ` K ) E. x e. ( Base ` K ) ( x ( +g ` K ) y ) = ( 0g ` K ) ) ) |
| 21 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 22 | eqid | |- ( +g ` L ) = ( +g ` L ) |
|
| 23 | eqid | |- ( 0g ` L ) = ( 0g ` L ) |
|
| 24 | 21 22 23 | isgrp | |- ( L e. Grp <-> ( L e. Mnd /\ A. y e. ( Base ` L ) E. x e. ( Base ` L ) ( x ( +g ` L ) y ) = ( 0g ` L ) ) ) |
| 25 | 16 20 24 | 3bitr4g | |- ( ph -> ( K e. Grp <-> L e. Grp ) ) |