This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubpropd.b | |- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
|
| grpsubpropd.p | |- ( ph -> ( +g ` G ) = ( +g ` H ) ) |
||
| Assertion | grpsubpropd | |- ( ph -> ( -g ` G ) = ( -g ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubpropd.b | |- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
|
| 2 | grpsubpropd.p | |- ( ph -> ( +g ` G ) = ( +g ` H ) ) |
|
| 3 | eqidd | |- ( ph -> a = a ) |
|
| 4 | eqidd | |- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
|
| 5 | 2 | oveqdr | |- ( ( ph /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
| 6 | 4 1 5 | grpinvpropd | |- ( ph -> ( invg ` G ) = ( invg ` H ) ) |
| 7 | 6 | fveq1d | |- ( ph -> ( ( invg ` G ) ` b ) = ( ( invg ` H ) ` b ) ) |
| 8 | 2 3 7 | oveq123d | |- ( ph -> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) = ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) |
| 9 | 1 1 8 | mpoeq123dv | |- ( ph -> ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) ) = ( a e. ( Base ` H ) , b e. ( Base ` H ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) ) |
| 10 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 11 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 12 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 13 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 14 | 10 11 12 13 | grpsubfval | |- ( -g ` G ) = ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) ) |
| 15 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 16 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 17 | eqid | |- ( invg ` H ) = ( invg ` H ) |
|
| 18 | eqid | |- ( -g ` H ) = ( -g ` H ) |
|
| 19 | 15 16 17 18 | grpsubfval | |- ( -g ` H ) = ( a e. ( Base ` H ) , b e. ( Base ` H ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) |
| 20 | 9 14 19 | 3eqtr4g | |- ( ph -> ( -g ` G ) = ( -g ` H ) ) |