This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The basic relation between the "arg" function Im o. log and the arctangent. (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanarg | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( tan ` ( Im ` ( log ` A ) ) ) = ( ( Im ` A ) / ( Re ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( A = 0 -> ( Re ` A ) = ( Re ` 0 ) ) |
|
| 2 | re0 | |- ( Re ` 0 ) = 0 |
|
| 3 | 1 2 | eqtrdi | |- ( A = 0 -> ( Re ` A ) = 0 ) |
| 4 | 3 | necon3i | |- ( ( Re ` A ) =/= 0 -> A =/= 0 ) |
| 5 | logcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
|
| 6 | 4 5 | sylan2 | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` A ) e. CC ) |
| 7 | 6 | imcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( log ` A ) ) e. RR ) |
| 8 | 7 | recnd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( log ` A ) ) e. CC ) |
| 9 | sqcl | |- ( A e. CC -> ( A ^ 2 ) e. CC ) |
|
| 10 | 9 | adantr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( A ^ 2 ) e. CC ) |
| 11 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 12 | 11 | adantr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( abs ` A ) e. RR ) |
| 13 | 12 | recnd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( abs ` A ) e. CC ) |
| 14 | 13 | sqcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( abs ` A ) ^ 2 ) e. CC ) |
| 15 | absrpcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
|
| 16 | 4 15 | sylan2 | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( abs ` A ) e. RR+ ) |
| 17 | 16 | rpne0d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( abs ` A ) =/= 0 ) |
| 18 | sqne0 | |- ( ( abs ` A ) e. CC -> ( ( ( abs ` A ) ^ 2 ) =/= 0 <-> ( abs ` A ) =/= 0 ) ) |
|
| 19 | 13 18 | syl | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( abs ` A ) ^ 2 ) =/= 0 <-> ( abs ` A ) =/= 0 ) ) |
| 20 | 17 19 | mpbird | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( abs ` A ) ^ 2 ) =/= 0 ) |
| 21 | 10 14 14 20 | divdird | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) / ( ( abs ` A ) ^ 2 ) ) = ( ( ( A ^ 2 ) / ( ( abs ` A ) ^ 2 ) ) + ( ( ( abs ` A ) ^ 2 ) / ( ( abs ` A ) ^ 2 ) ) ) ) |
| 22 | ax-icn | |- _i e. CC |
|
| 23 | mulcl | |- ( ( _i e. CC /\ ( Im ` ( log ` A ) ) e. CC ) -> ( _i x. ( Im ` ( log ` A ) ) ) e. CC ) |
|
| 24 | 22 8 23 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( Im ` ( log ` A ) ) ) e. CC ) |
| 25 | 2z | |- 2 e. ZZ |
|
| 26 | efexp | |- ( ( ( _i x. ( Im ` ( log ` A ) ) ) e. CC /\ 2 e. ZZ ) -> ( exp ` ( 2 x. ( _i x. ( Im ` ( log ` A ) ) ) ) ) = ( ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) ^ 2 ) ) |
|
| 27 | 24 25 26 | sylancl | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( exp ` ( 2 x. ( _i x. ( Im ` ( log ` A ) ) ) ) ) = ( ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) ^ 2 ) ) |
| 28 | efiarg | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) = ( A / ( abs ` A ) ) ) |
|
| 29 | 4 28 | sylan2 | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) = ( A / ( abs ` A ) ) ) |
| 30 | 29 | oveq1d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) ^ 2 ) = ( ( A / ( abs ` A ) ) ^ 2 ) ) |
| 31 | simpl | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> A e. CC ) |
|
| 32 | 31 13 17 | sqdivd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( A / ( abs ` A ) ) ^ 2 ) = ( ( A ^ 2 ) / ( ( abs ` A ) ^ 2 ) ) ) |
| 33 | 27 30 32 | 3eqtrrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( A ^ 2 ) / ( ( abs ` A ) ^ 2 ) ) = ( exp ` ( 2 x. ( _i x. ( Im ` ( log ` A ) ) ) ) ) ) |
| 34 | 14 20 | dividd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( abs ` A ) ^ 2 ) / ( ( abs ` A ) ^ 2 ) ) = 1 ) |
| 35 | 33 34 | oveq12d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( A ^ 2 ) / ( ( abs ` A ) ^ 2 ) ) + ( ( ( abs ` A ) ^ 2 ) / ( ( abs ` A ) ^ 2 ) ) ) = ( ( exp ` ( 2 x. ( _i x. ( Im ` ( log ` A ) ) ) ) ) + 1 ) ) |
| 36 | 21 35 | eqtr2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. ( Im ` ( log ` A ) ) ) ) ) + 1 ) = ( ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) / ( ( abs ` A ) ^ 2 ) ) ) |
| 37 | 10 14 | addcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) e. CC ) |
| 38 | 22 | a1i | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> _i e. CC ) |
| 39 | 2cn | |- 2 e. CC |
|
| 40 | recl | |- ( A e. CC -> ( Re ` A ) e. RR ) |
|
| 41 | 40 | adantr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) e. RR ) |
| 42 | 41 | recnd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) e. CC ) |
| 43 | 42 | sqcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( Re ` A ) ^ 2 ) e. CC ) |
| 44 | mulcl | |- ( ( 2 e. CC /\ ( ( Re ` A ) ^ 2 ) e. CC ) -> ( 2 x. ( ( Re ` A ) ^ 2 ) ) e. CC ) |
|
| 45 | 39 43 44 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 2 x. ( ( Re ` A ) ^ 2 ) ) e. CC ) |
| 46 | 39 | a1i | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> 2 e. CC ) |
| 47 | imcl | |- ( A e. CC -> ( Im ` A ) e. RR ) |
|
| 48 | 47 | adantr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` A ) e. RR ) |
| 49 | 48 | recnd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` A ) e. CC ) |
| 50 | 42 49 | mulcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( Re ` A ) x. ( Im ` A ) ) e. CC ) |
| 51 | 38 46 50 | mul12d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( 2 x. ( ( Re ` A ) x. ( Im ` A ) ) ) ) = ( 2 x. ( _i x. ( ( Re ` A ) x. ( Im ` A ) ) ) ) ) |
| 52 | 38 42 49 | mul12d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( ( Re ` A ) x. ( Im ` A ) ) ) = ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) |
| 53 | 52 | oveq2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 2 x. ( _i x. ( ( Re ` A ) x. ( Im ` A ) ) ) ) = ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) ) |
| 54 | 51 53 | eqtrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( 2 x. ( ( Re ` A ) x. ( Im ` A ) ) ) ) = ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) ) |
| 55 | mulcl | |- ( ( _i e. CC /\ ( Im ` A ) e. CC ) -> ( _i x. ( Im ` A ) ) e. CC ) |
|
| 56 | 22 49 55 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( Im ` A ) ) e. CC ) |
| 57 | 42 56 | mulcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) e. CC ) |
| 58 | mulcl | |- ( ( 2 e. CC /\ ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) e. CC ) -> ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) e. CC ) |
|
| 59 | 39 57 58 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) e. CC ) |
| 60 | 54 59 | eqeltrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( 2 x. ( ( Re ` A ) x. ( Im ` A ) ) ) ) e. CC ) |
| 61 | 38 45 60 | adddid | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( ( 2 x. ( ( Re ` A ) ^ 2 ) ) + ( _i x. ( 2 x. ( ( Re ` A ) x. ( Im ` A ) ) ) ) ) ) = ( ( _i x. ( 2 x. ( ( Re ` A ) ^ 2 ) ) ) + ( _i x. ( _i x. ( 2 x. ( ( Re ` A ) x. ( Im ` A ) ) ) ) ) ) ) |
| 62 | mulcl | |- ( ( ( Re ` A ) e. CC /\ _i e. CC ) -> ( ( Re ` A ) x. _i ) e. CC ) |
|
| 63 | 42 22 62 | sylancl | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( Re ` A ) x. _i ) e. CC ) |
| 64 | 46 63 42 | mulassd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( 2 x. ( ( Re ` A ) x. _i ) ) x. ( Re ` A ) ) = ( 2 x. ( ( ( Re ` A ) x. _i ) x. ( Re ` A ) ) ) ) |
| 65 | 42 | sqvald | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( Re ` A ) ^ 2 ) = ( ( Re ` A ) x. ( Re ` A ) ) ) |
| 66 | 65 | oveq1d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( Re ` A ) ^ 2 ) x. _i ) = ( ( ( Re ` A ) x. ( Re ` A ) ) x. _i ) ) |
| 67 | mulcom | |- ( ( ( ( Re ` A ) ^ 2 ) e. CC /\ _i e. CC ) -> ( ( ( Re ` A ) ^ 2 ) x. _i ) = ( _i x. ( ( Re ` A ) ^ 2 ) ) ) |
|
| 68 | 43 22 67 | sylancl | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( Re ` A ) ^ 2 ) x. _i ) = ( _i x. ( ( Re ` A ) ^ 2 ) ) ) |
| 69 | 42 42 38 | mul32d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( Re ` A ) x. ( Re ` A ) ) x. _i ) = ( ( ( Re ` A ) x. _i ) x. ( Re ` A ) ) ) |
| 70 | 66 68 69 | 3eqtr3d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( ( Re ` A ) ^ 2 ) ) = ( ( ( Re ` A ) x. _i ) x. ( Re ` A ) ) ) |
| 71 | 70 | oveq2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 2 x. ( _i x. ( ( Re ` A ) ^ 2 ) ) ) = ( 2 x. ( ( ( Re ` A ) x. _i ) x. ( Re ` A ) ) ) ) |
| 72 | 46 38 43 | mul12d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 2 x. ( _i x. ( ( Re ` A ) ^ 2 ) ) ) = ( _i x. ( 2 x. ( ( Re ` A ) ^ 2 ) ) ) ) |
| 73 | 64 71 72 | 3eqtr2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( 2 x. ( ( Re ` A ) x. _i ) ) x. ( Re ` A ) ) = ( _i x. ( 2 x. ( ( Re ` A ) ^ 2 ) ) ) ) |
| 74 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 75 | 74 | oveq1i | |- ( ( _i x. _i ) x. ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) ) = ( -u 1 x. ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) ) |
| 76 | mulcl | |- ( ( 2 e. CC /\ ( Im ` A ) e. CC ) -> ( 2 x. ( Im ` A ) ) e. CC ) |
|
| 77 | 39 49 76 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 2 x. ( Im ` A ) ) e. CC ) |
| 78 | 77 42 | mulcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) e. CC ) |
| 79 | 38 38 78 | mulassd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( _i x. _i ) x. ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) ) = ( _i x. ( _i x. ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) ) ) ) |
| 80 | 75 79 | eqtr3id | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( -u 1 x. ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) ) = ( _i x. ( _i x. ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) ) ) ) |
| 81 | 78 | mulm1d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( -u 1 x. ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) ) = -u ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) ) |
| 82 | 46 49 42 | mulassd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) = ( 2 x. ( ( Im ` A ) x. ( Re ` A ) ) ) ) |
| 83 | 49 42 | mulcomd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( Im ` A ) x. ( Re ` A ) ) = ( ( Re ` A ) x. ( Im ` A ) ) ) |
| 84 | 83 | oveq2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 2 x. ( ( Im ` A ) x. ( Re ` A ) ) ) = ( 2 x. ( ( Re ` A ) x. ( Im ` A ) ) ) ) |
| 85 | 82 84 | eqtrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) = ( 2 x. ( ( Re ` A ) x. ( Im ` A ) ) ) ) |
| 86 | 85 | oveq2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) ) = ( _i x. ( 2 x. ( ( Re ` A ) x. ( Im ` A ) ) ) ) ) |
| 87 | 86 | oveq2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( _i x. ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) ) ) = ( _i x. ( _i x. ( 2 x. ( ( Re ` A ) x. ( Im ` A ) ) ) ) ) ) |
| 88 | 80 81 87 | 3eqtr3d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> -u ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) = ( _i x. ( _i x. ( 2 x. ( ( Re ` A ) x. ( Im ` A ) ) ) ) ) ) |
| 89 | 73 88 | oveq12d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) x. ( Re ` A ) ) + -u ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) ) = ( ( _i x. ( 2 x. ( ( Re ` A ) ^ 2 ) ) ) + ( _i x. ( _i x. ( 2 x. ( ( Re ` A ) x. ( Im ` A ) ) ) ) ) ) ) |
| 90 | mulcl | |- ( ( 2 e. CC /\ ( ( Re ` A ) x. _i ) e. CC ) -> ( 2 x. ( ( Re ` A ) x. _i ) ) e. CC ) |
|
| 91 | 39 63 90 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 2 x. ( ( Re ` A ) x. _i ) ) e. CC ) |
| 92 | 91 42 | mulcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( 2 x. ( ( Re ` A ) x. _i ) ) x. ( Re ` A ) ) e. CC ) |
| 93 | 92 78 | negsubd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) x. ( Re ` A ) ) + -u ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) ) = ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) x. ( Re ` A ) ) - ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) ) ) |
| 94 | 61 89 93 | 3eqtr2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( ( 2 x. ( ( Re ` A ) ^ 2 ) ) + ( _i x. ( 2 x. ( ( Re ` A ) x. ( Im ` A ) ) ) ) ) ) = ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) x. ( Re ` A ) ) - ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) ) ) |
| 95 | 49 | sqcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( Im ` A ) ^ 2 ) e. CC ) |
| 96 | 59 95 | subcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( ( Im ` A ) ^ 2 ) ) e. CC ) |
| 97 | 43 96 43 95 | add4d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( ( Re ` A ) ^ 2 ) + ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( ( Im ` A ) ^ 2 ) ) ) + ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) ) = ( ( ( ( Re ` A ) ^ 2 ) + ( ( Re ` A ) ^ 2 ) ) + ( ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( ( Im ` A ) ^ 2 ) ) + ( ( Im ` A ) ^ 2 ) ) ) ) |
| 98 | replim | |- ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
|
| 99 | 98 | adantr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
| 100 | 99 | oveq1d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( A ^ 2 ) = ( ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ^ 2 ) ) |
| 101 | binom2 | |- ( ( ( Re ` A ) e. CC /\ ( _i x. ( Im ` A ) ) e. CC ) -> ( ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ^ 2 ) = ( ( ( ( Re ` A ) ^ 2 ) + ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) ) + ( ( _i x. ( Im ` A ) ) ^ 2 ) ) ) |
|
| 102 | 42 56 101 | syl2anc | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ^ 2 ) = ( ( ( ( Re ` A ) ^ 2 ) + ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) ) + ( ( _i x. ( Im ` A ) ) ^ 2 ) ) ) |
| 103 | sqmul | |- ( ( _i e. CC /\ ( Im ` A ) e. CC ) -> ( ( _i x. ( Im ` A ) ) ^ 2 ) = ( ( _i ^ 2 ) x. ( ( Im ` A ) ^ 2 ) ) ) |
|
| 104 | 22 49 103 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( _i x. ( Im ` A ) ) ^ 2 ) = ( ( _i ^ 2 ) x. ( ( Im ` A ) ^ 2 ) ) ) |
| 105 | i2 | |- ( _i ^ 2 ) = -u 1 |
|
| 106 | 105 | oveq1i | |- ( ( _i ^ 2 ) x. ( ( Im ` A ) ^ 2 ) ) = ( -u 1 x. ( ( Im ` A ) ^ 2 ) ) |
| 107 | 104 106 | eqtrdi | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( _i x. ( Im ` A ) ) ^ 2 ) = ( -u 1 x. ( ( Im ` A ) ^ 2 ) ) ) |
| 108 | 95 | mulm1d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( -u 1 x. ( ( Im ` A ) ^ 2 ) ) = -u ( ( Im ` A ) ^ 2 ) ) |
| 109 | 107 108 | eqtrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( _i x. ( Im ` A ) ) ^ 2 ) = -u ( ( Im ` A ) ^ 2 ) ) |
| 110 | 109 | oveq2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( ( Re ` A ) ^ 2 ) + ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) ) + ( ( _i x. ( Im ` A ) ) ^ 2 ) ) = ( ( ( ( Re ` A ) ^ 2 ) + ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) ) + -u ( ( Im ` A ) ^ 2 ) ) ) |
| 111 | 43 59 | addcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( Re ` A ) ^ 2 ) + ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) ) e. CC ) |
| 112 | 111 95 | negsubd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( ( Re ` A ) ^ 2 ) + ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) ) + -u ( ( Im ` A ) ^ 2 ) ) = ( ( ( ( Re ` A ) ^ 2 ) + ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) ) - ( ( Im ` A ) ^ 2 ) ) ) |
| 113 | 102 110 112 | 3eqtrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ^ 2 ) = ( ( ( ( Re ` A ) ^ 2 ) + ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) ) - ( ( Im ` A ) ^ 2 ) ) ) |
| 114 | 43 59 95 | addsubassd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( ( Re ` A ) ^ 2 ) + ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) ) - ( ( Im ` A ) ^ 2 ) ) = ( ( ( Re ` A ) ^ 2 ) + ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( ( Im ` A ) ^ 2 ) ) ) ) |
| 115 | 100 113 114 | 3eqtrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( A ^ 2 ) = ( ( ( Re ` A ) ^ 2 ) + ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( ( Im ` A ) ^ 2 ) ) ) ) |
| 116 | absvalsq2 | |- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) ) |
|
| 117 | 116 | adantr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( abs ` A ) ^ 2 ) = ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) ) |
| 118 | 115 117 | oveq12d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) = ( ( ( ( Re ` A ) ^ 2 ) + ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( ( Im ` A ) ^ 2 ) ) ) + ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) ) ) |
| 119 | 43 | 2timesd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 2 x. ( ( Re ` A ) ^ 2 ) ) = ( ( ( Re ` A ) ^ 2 ) + ( ( Re ` A ) ^ 2 ) ) ) |
| 120 | 59 95 | npcand | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( ( Im ` A ) ^ 2 ) ) + ( ( Im ` A ) ^ 2 ) ) = ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) ) |
| 121 | 53 51 120 | 3eqtr4d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( 2 x. ( ( Re ` A ) x. ( Im ` A ) ) ) ) = ( ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( ( Im ` A ) ^ 2 ) ) + ( ( Im ` A ) ^ 2 ) ) ) |
| 122 | 119 121 | oveq12d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( 2 x. ( ( Re ` A ) ^ 2 ) ) + ( _i x. ( 2 x. ( ( Re ` A ) x. ( Im ` A ) ) ) ) ) = ( ( ( ( Re ` A ) ^ 2 ) + ( ( Re ` A ) ^ 2 ) ) + ( ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( ( Im ` A ) ^ 2 ) ) + ( ( Im ` A ) ^ 2 ) ) ) ) |
| 123 | 97 118 122 | 3eqtr4d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) = ( ( 2 x. ( ( Re ` A ) ^ 2 ) ) + ( _i x. ( 2 x. ( ( Re ` A ) x. ( Im ` A ) ) ) ) ) ) |
| 124 | 123 | oveq2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) ) = ( _i x. ( ( 2 x. ( ( Re ` A ) ^ 2 ) ) + ( _i x. ( 2 x. ( ( Re ` A ) x. ( Im ` A ) ) ) ) ) ) ) |
| 125 | 91 77 42 | subdird | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) - ( 2 x. ( Im ` A ) ) ) x. ( Re ` A ) ) = ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) x. ( Re ` A ) ) - ( ( 2 x. ( Im ` A ) ) x. ( Re ` A ) ) ) ) |
| 126 | 94 124 125 | 3eqtr4d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) ) = ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) - ( 2 x. ( Im ` A ) ) ) x. ( Re ` A ) ) ) |
| 127 | 91 77 | subcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( 2 x. ( ( Re ` A ) x. _i ) ) - ( 2 x. ( Im ` A ) ) ) e. CC ) |
| 128 | mulcom | |- ( ( ( Re ` A ) e. CC /\ _i e. CC ) -> ( ( Re ` A ) x. _i ) = ( _i x. ( Re ` A ) ) ) |
|
| 129 | 42 22 128 | sylancl | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( Re ` A ) x. _i ) = ( _i x. ( Re ` A ) ) ) |
| 130 | simpr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) =/= 0 ) |
|
| 131 | eleq1 | |- ( ( _i x. ( Re ` A ) ) = ( Im ` A ) -> ( ( _i x. ( Re ` A ) ) e. RR <-> ( Im ` A ) e. RR ) ) |
|
| 132 | 48 131 | syl5ibrcom | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( _i x. ( Re ` A ) ) = ( Im ` A ) -> ( _i x. ( Re ` A ) ) e. RR ) ) |
| 133 | rimul | |- ( ( ( Re ` A ) e. RR /\ ( _i x. ( Re ` A ) ) e. RR ) -> ( Re ` A ) = 0 ) |
|
| 134 | 41 132 133 | syl6an | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( _i x. ( Re ` A ) ) = ( Im ` A ) -> ( Re ` A ) = 0 ) ) |
| 135 | 134 | necon3d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( Re ` A ) =/= 0 -> ( _i x. ( Re ` A ) ) =/= ( Im ` A ) ) ) |
| 136 | 130 135 | mpd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( Re ` A ) ) =/= ( Im ` A ) ) |
| 137 | 129 136 | eqnetrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( Re ` A ) x. _i ) =/= ( Im ` A ) ) |
| 138 | 91 77 | subeq0ad | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) - ( 2 x. ( Im ` A ) ) ) = 0 <-> ( 2 x. ( ( Re ` A ) x. _i ) ) = ( 2 x. ( Im ` A ) ) ) ) |
| 139 | 2ne0 | |- 2 =/= 0 |
|
| 140 | 139 | a1i | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> 2 =/= 0 ) |
| 141 | 63 49 46 140 | mulcand | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( 2 x. ( ( Re ` A ) x. _i ) ) = ( 2 x. ( Im ` A ) ) <-> ( ( Re ` A ) x. _i ) = ( Im ` A ) ) ) |
| 142 | 138 141 | bitrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) - ( 2 x. ( Im ` A ) ) ) = 0 <-> ( ( Re ` A ) x. _i ) = ( Im ` A ) ) ) |
| 143 | 142 | necon3bid | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) - ( 2 x. ( Im ` A ) ) ) =/= 0 <-> ( ( Re ` A ) x. _i ) =/= ( Im ` A ) ) ) |
| 144 | 137 143 | mpbird | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( 2 x. ( ( Re ` A ) x. _i ) ) - ( 2 x. ( Im ` A ) ) ) =/= 0 ) |
| 145 | 127 42 144 130 | mulne0d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) - ( 2 x. ( Im ` A ) ) ) x. ( Re ` A ) ) =/= 0 ) |
| 146 | 126 145 | eqnetrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) ) =/= 0 ) |
| 147 | oveq2 | |- ( ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) = 0 -> ( _i x. ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) ) = ( _i x. 0 ) ) |
|
| 148 | it0e0 | |- ( _i x. 0 ) = 0 |
|
| 149 | 147 148 | eqtrdi | |- ( ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) = 0 -> ( _i x. ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) ) = 0 ) |
| 150 | 149 | necon3i | |- ( ( _i x. ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) ) =/= 0 -> ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) =/= 0 ) |
| 151 | 146 150 | syl | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) =/= 0 ) |
| 152 | 37 14 151 20 | divne0d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) / ( ( abs ` A ) ^ 2 ) ) =/= 0 ) |
| 153 | 36 152 | eqnetrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. ( Im ` ( log ` A ) ) ) ) ) + 1 ) =/= 0 ) |
| 154 | tanval3 | |- ( ( ( Im ` ( log ` A ) ) e. CC /\ ( ( exp ` ( 2 x. ( _i x. ( Im ` ( log ` A ) ) ) ) ) + 1 ) =/= 0 ) -> ( tan ` ( Im ` ( log ` A ) ) ) = ( ( ( exp ` ( 2 x. ( _i x. ( Im ` ( log ` A ) ) ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. ( Im ` ( log ` A ) ) ) ) ) + 1 ) ) ) ) |
|
| 155 | 8 153 154 | syl2anc | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( tan ` ( Im ` ( log ` A ) ) ) = ( ( ( exp ` ( 2 x. ( _i x. ( Im ` ( log ` A ) ) ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. ( Im ` ( log ` A ) ) ) ) ) + 1 ) ) ) ) |
| 156 | 10 14 14 20 | divsubdird | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( A ^ 2 ) - ( ( abs ` A ) ^ 2 ) ) / ( ( abs ` A ) ^ 2 ) ) = ( ( ( A ^ 2 ) / ( ( abs ` A ) ^ 2 ) ) - ( ( ( abs ` A ) ^ 2 ) / ( ( abs ` A ) ^ 2 ) ) ) ) |
| 157 | 33 34 | oveq12d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( A ^ 2 ) / ( ( abs ` A ) ^ 2 ) ) - ( ( ( abs ` A ) ^ 2 ) / ( ( abs ` A ) ^ 2 ) ) ) = ( ( exp ` ( 2 x. ( _i x. ( Im ` ( log ` A ) ) ) ) ) - 1 ) ) |
| 158 | 156 157 | eqtr2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. ( Im ` ( log ` A ) ) ) ) ) - 1 ) = ( ( ( A ^ 2 ) - ( ( abs ` A ) ^ 2 ) ) / ( ( abs ` A ) ^ 2 ) ) ) |
| 159 | 36 | oveq2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( ( exp ` ( 2 x. ( _i x. ( Im ` ( log ` A ) ) ) ) ) + 1 ) ) = ( _i x. ( ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) / ( ( abs ` A ) ^ 2 ) ) ) ) |
| 160 | 38 37 14 20 | divassd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( _i x. ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) ) / ( ( abs ` A ) ^ 2 ) ) = ( _i x. ( ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) / ( ( abs ` A ) ^ 2 ) ) ) ) |
| 161 | 159 160 | eqtr4d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( ( exp ` ( 2 x. ( _i x. ( Im ` ( log ` A ) ) ) ) ) + 1 ) ) = ( ( _i x. ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) ) / ( ( abs ` A ) ^ 2 ) ) ) |
| 162 | 158 161 | oveq12d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( exp ` ( 2 x. ( _i x. ( Im ` ( log ` A ) ) ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. ( Im ` ( log ` A ) ) ) ) ) + 1 ) ) ) = ( ( ( ( A ^ 2 ) - ( ( abs ` A ) ^ 2 ) ) / ( ( abs ` A ) ^ 2 ) ) / ( ( _i x. ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) ) / ( ( abs ` A ) ^ 2 ) ) ) ) |
| 163 | 10 14 | subcld | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( A ^ 2 ) - ( ( abs ` A ) ^ 2 ) ) e. CC ) |
| 164 | mulcl | |- ( ( _i e. CC /\ ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) e. CC ) -> ( _i x. ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) ) e. CC ) |
|
| 165 | 22 37 164 | sylancr | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) ) e. CC ) |
| 166 | 163 165 14 146 20 | divcan7d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( ( A ^ 2 ) - ( ( abs ` A ) ^ 2 ) ) / ( ( abs ` A ) ^ 2 ) ) / ( ( _i x. ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) ) / ( ( abs ` A ) ^ 2 ) ) ) = ( ( ( A ^ 2 ) - ( ( abs ` A ) ^ 2 ) ) / ( _i x. ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) ) ) ) |
| 167 | 115 117 | oveq12d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( A ^ 2 ) - ( ( abs ` A ) ^ 2 ) ) = ( ( ( ( Re ` A ) ^ 2 ) + ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( ( Im ` A ) ^ 2 ) ) ) - ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) ) ) |
| 168 | 43 96 95 | pnpcand | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( ( Re ` A ) ^ 2 ) + ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( ( Im ` A ) ^ 2 ) ) ) - ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) ) = ( ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( ( Im ` A ) ^ 2 ) ) - ( ( Im ` A ) ^ 2 ) ) ) |
| 169 | 59 95 95 | subsub4d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( ( Im ` A ) ^ 2 ) ) - ( ( Im ` A ) ^ 2 ) ) = ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( ( ( Im ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) ) ) |
| 170 | 95 | 2timesd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 2 x. ( ( Im ` A ) ^ 2 ) ) = ( ( ( Im ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) ) |
| 171 | 170 | oveq2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( 2 x. ( ( Im ` A ) ^ 2 ) ) ) = ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( ( ( Im ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) ) ) |
| 172 | 46 63 49 | mulassd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( 2 x. ( ( Re ` A ) x. _i ) ) x. ( Im ` A ) ) = ( 2 x. ( ( ( Re ` A ) x. _i ) x. ( Im ` A ) ) ) ) |
| 173 | 42 38 49 | mulassd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( Re ` A ) x. _i ) x. ( Im ` A ) ) = ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) |
| 174 | 173 | oveq2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 2 x. ( ( ( Re ` A ) x. _i ) x. ( Im ` A ) ) ) = ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) ) |
| 175 | 172 174 | eqtr2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) = ( ( 2 x. ( ( Re ` A ) x. _i ) ) x. ( Im ` A ) ) ) |
| 176 | 49 | sqvald | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( Im ` A ) ^ 2 ) = ( ( Im ` A ) x. ( Im ` A ) ) ) |
| 177 | 176 | oveq2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 2 x. ( ( Im ` A ) ^ 2 ) ) = ( 2 x. ( ( Im ` A ) x. ( Im ` A ) ) ) ) |
| 178 | 46 49 49 | mulassd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( 2 x. ( Im ` A ) ) x. ( Im ` A ) ) = ( 2 x. ( ( Im ` A ) x. ( Im ` A ) ) ) ) |
| 179 | 177 178 | eqtr4d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 2 x. ( ( Im ` A ) ^ 2 ) ) = ( ( 2 x. ( Im ` A ) ) x. ( Im ` A ) ) ) |
| 180 | 175 179 | oveq12d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( 2 x. ( ( Im ` A ) ^ 2 ) ) ) = ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) x. ( Im ` A ) ) - ( ( 2 x. ( Im ` A ) ) x. ( Im ` A ) ) ) ) |
| 181 | 91 77 49 | subdird | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) - ( 2 x. ( Im ` A ) ) ) x. ( Im ` A ) ) = ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) x. ( Im ` A ) ) - ( ( 2 x. ( Im ` A ) ) x. ( Im ` A ) ) ) ) |
| 182 | 180 181 | eqtr4d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( 2 x. ( ( Im ` A ) ^ 2 ) ) ) = ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) - ( 2 x. ( Im ` A ) ) ) x. ( Im ` A ) ) ) |
| 183 | 169 171 182 | 3eqtr2d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( 2 x. ( ( Re ` A ) x. ( _i x. ( Im ` A ) ) ) ) - ( ( Im ` A ) ^ 2 ) ) - ( ( Im ` A ) ^ 2 ) ) = ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) - ( 2 x. ( Im ` A ) ) ) x. ( Im ` A ) ) ) |
| 184 | 167 168 183 | 3eqtrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( A ^ 2 ) - ( ( abs ` A ) ^ 2 ) ) = ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) - ( 2 x. ( Im ` A ) ) ) x. ( Im ` A ) ) ) |
| 185 | 184 126 | oveq12d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( A ^ 2 ) - ( ( abs ` A ) ^ 2 ) ) / ( _i x. ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) ) ) = ( ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) - ( 2 x. ( Im ` A ) ) ) x. ( Im ` A ) ) / ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) - ( 2 x. ( Im ` A ) ) ) x. ( Re ` A ) ) ) ) |
| 186 | 49 42 127 130 144 | divcan5d | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) - ( 2 x. ( Im ` A ) ) ) x. ( Im ` A ) ) / ( ( ( 2 x. ( ( Re ` A ) x. _i ) ) - ( 2 x. ( Im ` A ) ) ) x. ( Re ` A ) ) ) = ( ( Im ` A ) / ( Re ` A ) ) ) |
| 187 | 166 185 186 | 3eqtrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( ( ( A ^ 2 ) - ( ( abs ` A ) ^ 2 ) ) / ( ( abs ` A ) ^ 2 ) ) / ( ( _i x. ( ( A ^ 2 ) + ( ( abs ` A ) ^ 2 ) ) ) / ( ( abs ` A ) ^ 2 ) ) ) = ( ( Im ` A ) / ( Re ` A ) ) ) |
| 188 | 155 162 187 | 3eqtrd | |- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( tan ` ( Im ` ( log ` A ) ) ) = ( ( Im ` A ) / ( Re ` A ) ) ) |