This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for multiplication. Theorem I.7 of Apostol p. 18. (Contributed by NM, 26-Jan-1995) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulcand.1 | |- ( ph -> A e. CC ) |
|
| mulcand.2 | |- ( ph -> B e. CC ) |
||
| mulcand.3 | |- ( ph -> C e. CC ) |
||
| mulcand.4 | |- ( ph -> C =/= 0 ) |
||
| Assertion | mulcand | |- ( ph -> ( ( C x. A ) = ( C x. B ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcand.1 | |- ( ph -> A e. CC ) |
|
| 2 | mulcand.2 | |- ( ph -> B e. CC ) |
|
| 3 | mulcand.3 | |- ( ph -> C e. CC ) |
|
| 4 | mulcand.4 | |- ( ph -> C =/= 0 ) |
|
| 5 | recex | |- ( ( C e. CC /\ C =/= 0 ) -> E. x e. CC ( C x. x ) = 1 ) |
|
| 6 | 3 4 5 | syl2anc | |- ( ph -> E. x e. CC ( C x. x ) = 1 ) |
| 7 | oveq2 | |- ( ( C x. A ) = ( C x. B ) -> ( x x. ( C x. A ) ) = ( x x. ( C x. B ) ) ) |
|
| 8 | simprl | |- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> x e. CC ) |
|
| 9 | 3 | adantr | |- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> C e. CC ) |
| 10 | 8 9 | mulcomd | |- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( x x. C ) = ( C x. x ) ) |
| 11 | simprr | |- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( C x. x ) = 1 ) |
|
| 12 | 10 11 | eqtrd | |- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( x x. C ) = 1 ) |
| 13 | 12 | oveq1d | |- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( ( x x. C ) x. A ) = ( 1 x. A ) ) |
| 14 | 1 | adantr | |- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> A e. CC ) |
| 15 | 8 9 14 | mulassd | |- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( ( x x. C ) x. A ) = ( x x. ( C x. A ) ) ) |
| 16 | 14 | mullidd | |- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( 1 x. A ) = A ) |
| 17 | 13 15 16 | 3eqtr3d | |- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( x x. ( C x. A ) ) = A ) |
| 18 | 12 | oveq1d | |- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( ( x x. C ) x. B ) = ( 1 x. B ) ) |
| 19 | 2 | adantr | |- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> B e. CC ) |
| 20 | 8 9 19 | mulassd | |- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( ( x x. C ) x. B ) = ( x x. ( C x. B ) ) ) |
| 21 | 19 | mullidd | |- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( 1 x. B ) = B ) |
| 22 | 18 20 21 | 3eqtr3d | |- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( x x. ( C x. B ) ) = B ) |
| 23 | 17 22 | eqeq12d | |- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( ( x x. ( C x. A ) ) = ( x x. ( C x. B ) ) <-> A = B ) ) |
| 24 | 7 23 | imbitrid | |- ( ( ph /\ ( x e. CC /\ ( C x. x ) = 1 ) ) -> ( ( C x. A ) = ( C x. B ) -> A = B ) ) |
| 25 | 6 24 | rexlimddv | |- ( ph -> ( ( C x. A ) = ( C x. B ) -> A = B ) ) |
| 26 | oveq2 | |- ( A = B -> ( C x. A ) = ( C x. B ) ) |
|
| 27 | 25 26 | impbid1 | |- ( ph -> ( ( C x. A ) = ( C x. B ) <-> A = B ) ) |