This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rimul | |- ( ( A e. RR /\ ( _i x. A ) e. RR ) -> A = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inelr | |- -. _i e. RR |
|
| 2 | ax-icn | |- _i e. CC |
|
| 3 | 2 | a1i | |- ( ( ( A e. RR /\ ( _i x. A ) e. RR ) /\ A =/= 0 ) -> _i e. CC ) |
| 4 | simpll | |- ( ( ( A e. RR /\ ( _i x. A ) e. RR ) /\ A =/= 0 ) -> A e. RR ) |
|
| 5 | 4 | recnd | |- ( ( ( A e. RR /\ ( _i x. A ) e. RR ) /\ A =/= 0 ) -> A e. CC ) |
| 6 | simpr | |- ( ( ( A e. RR /\ ( _i x. A ) e. RR ) /\ A =/= 0 ) -> A =/= 0 ) |
|
| 7 | 3 5 6 | divcan4d | |- ( ( ( A e. RR /\ ( _i x. A ) e. RR ) /\ A =/= 0 ) -> ( ( _i x. A ) / A ) = _i ) |
| 8 | simplr | |- ( ( ( A e. RR /\ ( _i x. A ) e. RR ) /\ A =/= 0 ) -> ( _i x. A ) e. RR ) |
|
| 9 | 8 4 6 | redivcld | |- ( ( ( A e. RR /\ ( _i x. A ) e. RR ) /\ A =/= 0 ) -> ( ( _i x. A ) / A ) e. RR ) |
| 10 | 7 9 | eqeltrrd | |- ( ( ( A e. RR /\ ( _i x. A ) e. RR ) /\ A =/= 0 ) -> _i e. RR ) |
| 11 | 10 | ex | |- ( ( A e. RR /\ ( _i x. A ) e. RR ) -> ( A =/= 0 -> _i e. RR ) ) |
| 12 | 11 | necon1bd | |- ( ( A e. RR /\ ( _i x. A ) e. RR ) -> ( -. _i e. RR -> A = 0 ) ) |
| 13 | 1 12 | mpi | |- ( ( A e. RR /\ ( _i x. A ) e. RR ) -> A = 0 ) |