This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of an integer power. Corollary 15-4.4 of Gleason p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006) (Revised by Mario Carneiro, 5-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efexp | |- ( ( A e. CC /\ N e. ZZ ) -> ( exp ` ( N x. A ) ) = ( ( exp ` A ) ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 2 | mulcom | |- ( ( A e. CC /\ N e. CC ) -> ( A x. N ) = ( N x. A ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. CC /\ N e. ZZ ) -> ( A x. N ) = ( N x. A ) ) |
| 4 | 3 | fveq2d | |- ( ( A e. CC /\ N e. ZZ ) -> ( exp ` ( A x. N ) ) = ( exp ` ( N x. A ) ) ) |
| 5 | oveq2 | |- ( j = 0 -> ( A x. j ) = ( A x. 0 ) ) |
|
| 6 | 5 | fveq2d | |- ( j = 0 -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. 0 ) ) ) |
| 7 | oveq2 | |- ( j = 0 -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ 0 ) ) |
|
| 8 | 6 7 | eqeq12d | |- ( j = 0 -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. 0 ) ) = ( ( exp ` A ) ^ 0 ) ) ) |
| 9 | oveq2 | |- ( j = k -> ( A x. j ) = ( A x. k ) ) |
|
| 10 | 9 | fveq2d | |- ( j = k -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. k ) ) ) |
| 11 | oveq2 | |- ( j = k -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ k ) ) |
|
| 12 | 10 11 | eqeq12d | |- ( j = k -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) ) |
| 13 | oveq2 | |- ( j = ( k + 1 ) -> ( A x. j ) = ( A x. ( k + 1 ) ) ) |
|
| 14 | 13 | fveq2d | |- ( j = ( k + 1 ) -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. ( k + 1 ) ) ) ) |
| 15 | oveq2 | |- ( j = ( k + 1 ) -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ ( k + 1 ) ) ) |
|
| 16 | 14 15 | eqeq12d | |- ( j = ( k + 1 ) -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` A ) ^ ( k + 1 ) ) ) ) |
| 17 | oveq2 | |- ( j = -u k -> ( A x. j ) = ( A x. -u k ) ) |
|
| 18 | 17 | fveq2d | |- ( j = -u k -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. -u k ) ) ) |
| 19 | oveq2 | |- ( j = -u k -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ -u k ) ) |
|
| 20 | 18 19 | eqeq12d | |- ( j = -u k -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. -u k ) ) = ( ( exp ` A ) ^ -u k ) ) ) |
| 21 | oveq2 | |- ( j = N -> ( A x. j ) = ( A x. N ) ) |
|
| 22 | 21 | fveq2d | |- ( j = N -> ( exp ` ( A x. j ) ) = ( exp ` ( A x. N ) ) ) |
| 23 | oveq2 | |- ( j = N -> ( ( exp ` A ) ^ j ) = ( ( exp ` A ) ^ N ) ) |
|
| 24 | 22 23 | eqeq12d | |- ( j = N -> ( ( exp ` ( A x. j ) ) = ( ( exp ` A ) ^ j ) <-> ( exp ` ( A x. N ) ) = ( ( exp ` A ) ^ N ) ) ) |
| 25 | ef0 | |- ( exp ` 0 ) = 1 |
|
| 26 | mul01 | |- ( A e. CC -> ( A x. 0 ) = 0 ) |
|
| 27 | 26 | fveq2d | |- ( A e. CC -> ( exp ` ( A x. 0 ) ) = ( exp ` 0 ) ) |
| 28 | efcl | |- ( A e. CC -> ( exp ` A ) e. CC ) |
|
| 29 | 28 | exp0d | |- ( A e. CC -> ( ( exp ` A ) ^ 0 ) = 1 ) |
| 30 | 25 27 29 | 3eqtr4a | |- ( A e. CC -> ( exp ` ( A x. 0 ) ) = ( ( exp ` A ) ^ 0 ) ) |
| 31 | oveq1 | |- ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) |
|
| 32 | 31 | adantl | |- ( ( ( A e. CC /\ k e. NN0 ) /\ ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) -> ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) |
| 33 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 34 | ax-1cn | |- 1 e. CC |
|
| 35 | adddi | |- ( ( A e. CC /\ k e. CC /\ 1 e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + ( A x. 1 ) ) ) |
|
| 36 | 34 35 | mp3an3 | |- ( ( A e. CC /\ k e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + ( A x. 1 ) ) ) |
| 37 | mulrid | |- ( A e. CC -> ( A x. 1 ) = A ) |
|
| 38 | 37 | adantr | |- ( ( A e. CC /\ k e. CC ) -> ( A x. 1 ) = A ) |
| 39 | 38 | oveq2d | |- ( ( A e. CC /\ k e. CC ) -> ( ( A x. k ) + ( A x. 1 ) ) = ( ( A x. k ) + A ) ) |
| 40 | 36 39 | eqtrd | |- ( ( A e. CC /\ k e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + A ) ) |
| 41 | 33 40 | sylan2 | |- ( ( A e. CC /\ k e. NN0 ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + A ) ) |
| 42 | 41 | fveq2d | |- ( ( A e. CC /\ k e. NN0 ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( exp ` ( ( A x. k ) + A ) ) ) |
| 43 | mulcl | |- ( ( A e. CC /\ k e. CC ) -> ( A x. k ) e. CC ) |
|
| 44 | 33 43 | sylan2 | |- ( ( A e. CC /\ k e. NN0 ) -> ( A x. k ) e. CC ) |
| 45 | simpl | |- ( ( A e. CC /\ k e. NN0 ) -> A e. CC ) |
|
| 46 | efadd | |- ( ( ( A x. k ) e. CC /\ A e. CC ) -> ( exp ` ( ( A x. k ) + A ) ) = ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) ) |
|
| 47 | 44 45 46 | syl2anc | |- ( ( A e. CC /\ k e. NN0 ) -> ( exp ` ( ( A x. k ) + A ) ) = ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) ) |
| 48 | 42 47 | eqtrd | |- ( ( A e. CC /\ k e. NN0 ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) ) |
| 49 | 48 | adantr | |- ( ( ( A e. CC /\ k e. NN0 ) /\ ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` ( A x. k ) ) x. ( exp ` A ) ) ) |
| 50 | expp1 | |- ( ( ( exp ` A ) e. CC /\ k e. NN0 ) -> ( ( exp ` A ) ^ ( k + 1 ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) |
|
| 51 | 28 50 | sylan | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( exp ` A ) ^ ( k + 1 ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) |
| 52 | 51 | adantr | |- ( ( ( A e. CC /\ k e. NN0 ) /\ ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) -> ( ( exp ` A ) ^ ( k + 1 ) ) = ( ( ( exp ` A ) ^ k ) x. ( exp ` A ) ) ) |
| 53 | 32 49 52 | 3eqtr4d | |- ( ( ( A e. CC /\ k e. NN0 ) /\ ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` A ) ^ ( k + 1 ) ) ) |
| 54 | 53 | exp31 | |- ( A e. CC -> ( k e. NN0 -> ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( exp ` ( A x. ( k + 1 ) ) ) = ( ( exp ` A ) ^ ( k + 1 ) ) ) ) ) |
| 55 | oveq2 | |- ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( 1 / ( exp ` ( A x. k ) ) ) = ( 1 / ( ( exp ` A ) ^ k ) ) ) |
|
| 56 | nncn | |- ( k e. NN -> k e. CC ) |
|
| 57 | mulneg2 | |- ( ( A e. CC /\ k e. CC ) -> ( A x. -u k ) = -u ( A x. k ) ) |
|
| 58 | 56 57 | sylan2 | |- ( ( A e. CC /\ k e. NN ) -> ( A x. -u k ) = -u ( A x. k ) ) |
| 59 | 58 | fveq2d | |- ( ( A e. CC /\ k e. NN ) -> ( exp ` ( A x. -u k ) ) = ( exp ` -u ( A x. k ) ) ) |
| 60 | 56 43 | sylan2 | |- ( ( A e. CC /\ k e. NN ) -> ( A x. k ) e. CC ) |
| 61 | efneg | |- ( ( A x. k ) e. CC -> ( exp ` -u ( A x. k ) ) = ( 1 / ( exp ` ( A x. k ) ) ) ) |
|
| 62 | 60 61 | syl | |- ( ( A e. CC /\ k e. NN ) -> ( exp ` -u ( A x. k ) ) = ( 1 / ( exp ` ( A x. k ) ) ) ) |
| 63 | 59 62 | eqtrd | |- ( ( A e. CC /\ k e. NN ) -> ( exp ` ( A x. -u k ) ) = ( 1 / ( exp ` ( A x. k ) ) ) ) |
| 64 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 65 | expneg | |- ( ( ( exp ` A ) e. CC /\ k e. NN0 ) -> ( ( exp ` A ) ^ -u k ) = ( 1 / ( ( exp ` A ) ^ k ) ) ) |
|
| 66 | 28 64 65 | syl2an | |- ( ( A e. CC /\ k e. NN ) -> ( ( exp ` A ) ^ -u k ) = ( 1 / ( ( exp ` A ) ^ k ) ) ) |
| 67 | 63 66 | eqeq12d | |- ( ( A e. CC /\ k e. NN ) -> ( ( exp ` ( A x. -u k ) ) = ( ( exp ` A ) ^ -u k ) <-> ( 1 / ( exp ` ( A x. k ) ) ) = ( 1 / ( ( exp ` A ) ^ k ) ) ) ) |
| 68 | 55 67 | imbitrrid | |- ( ( A e. CC /\ k e. NN ) -> ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( exp ` ( A x. -u k ) ) = ( ( exp ` A ) ^ -u k ) ) ) |
| 69 | 68 | ex | |- ( A e. CC -> ( k e. NN -> ( ( exp ` ( A x. k ) ) = ( ( exp ` A ) ^ k ) -> ( exp ` ( A x. -u k ) ) = ( ( exp ` A ) ^ -u k ) ) ) ) |
| 70 | 8 12 16 20 24 30 54 69 | zindd | |- ( A e. CC -> ( N e. ZZ -> ( exp ` ( A x. N ) ) = ( ( exp ` A ) ^ N ) ) ) |
| 71 | 70 | imp | |- ( ( A e. CC /\ N e. ZZ ) -> ( exp ` ( A x. N ) ) = ( ( exp ` A ) ^ N ) ) |
| 72 | 4 71 | eqtr3d | |- ( ( A e. CC /\ N e. ZZ ) -> ( exp ` ( N x. A ) ) = ( ( exp ` A ) ^ N ) ) |