This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of the "arg" function Im o. log . (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efiarg | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) = ( A / ( abs ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
|
| 2 | 1 | recld | |- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) e. RR ) |
| 3 | 2 | recnd | |- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) e. CC ) |
| 4 | efsub | |- ( ( ( log ` A ) e. CC /\ ( Re ` ( log ` A ) ) e. CC ) -> ( exp ` ( ( log ` A ) - ( Re ` ( log ` A ) ) ) ) = ( ( exp ` ( log ` A ) ) / ( exp ` ( Re ` ( log ` A ) ) ) ) ) |
|
| 5 | 1 3 4 | syl2anc | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( ( log ` A ) - ( Re ` ( log ` A ) ) ) ) = ( ( exp ` ( log ` A ) ) / ( exp ` ( Re ` ( log ` A ) ) ) ) ) |
| 6 | ax-icn | |- _i e. CC |
|
| 7 | 1 | imcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. RR ) |
| 8 | 7 | recnd | |- ( ( A e. CC /\ A =/= 0 ) -> ( Im ` ( log ` A ) ) e. CC ) |
| 9 | mulcl | |- ( ( _i e. CC /\ ( Im ` ( log ` A ) ) e. CC ) -> ( _i x. ( Im ` ( log ` A ) ) ) e. CC ) |
|
| 10 | 6 8 9 | sylancr | |- ( ( A e. CC /\ A =/= 0 ) -> ( _i x. ( Im ` ( log ` A ) ) ) e. CC ) |
| 11 | 1 | replimd | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) = ( ( Re ` ( log ` A ) ) + ( _i x. ( Im ` ( log ` A ) ) ) ) ) |
| 12 | 3 10 11 | mvrladdd | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( log ` A ) - ( Re ` ( log ` A ) ) ) = ( _i x. ( Im ` ( log ` A ) ) ) ) |
| 13 | 12 | fveq2d | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( ( log ` A ) - ( Re ` ( log ` A ) ) ) ) = ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) ) |
| 14 | eflog | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
|
| 15 | relog | |- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) = ( log ` ( abs ` A ) ) ) |
|
| 16 | 15 | fveq2d | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( Re ` ( log ` A ) ) ) = ( exp ` ( log ` ( abs ` A ) ) ) ) |
| 17 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 18 | 17 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR ) |
| 19 | 18 | recnd | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. CC ) |
| 20 | absrpcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
|
| 21 | 20 | rpne0d | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) =/= 0 ) |
| 22 | eflog | |- ( ( ( abs ` A ) e. CC /\ ( abs ` A ) =/= 0 ) -> ( exp ` ( log ` ( abs ` A ) ) ) = ( abs ` A ) ) |
|
| 23 | 19 21 22 | syl2anc | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` ( abs ` A ) ) ) = ( abs ` A ) ) |
| 24 | 16 23 | eqtrd | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( Re ` ( log ` A ) ) ) = ( abs ` A ) ) |
| 25 | 14 24 | oveq12d | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( exp ` ( log ` A ) ) / ( exp ` ( Re ` ( log ` A ) ) ) ) = ( A / ( abs ` A ) ) ) |
| 26 | 5 13 25 | 3eqtr3d | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( _i x. ( Im ` ( log ` A ) ) ) ) = ( A / ( abs ` A ) ) ) |