This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999) (Revised by Mario Carneiro, 7-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | replim | |- ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre | |- ( A e. CC -> E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) |
|
| 2 | crre | |- ( ( x e. RR /\ y e. RR ) -> ( Re ` ( x + ( _i x. y ) ) ) = x ) |
|
| 3 | crim | |- ( ( x e. RR /\ y e. RR ) -> ( Im ` ( x + ( _i x. y ) ) ) = y ) |
|
| 4 | 3 | oveq2d | |- ( ( x e. RR /\ y e. RR ) -> ( _i x. ( Im ` ( x + ( _i x. y ) ) ) ) = ( _i x. y ) ) |
| 5 | 2 4 | oveq12d | |- ( ( x e. RR /\ y e. RR ) -> ( ( Re ` ( x + ( _i x. y ) ) ) + ( _i x. ( Im ` ( x + ( _i x. y ) ) ) ) ) = ( x + ( _i x. y ) ) ) |
| 6 | 5 | eqcomd | |- ( ( x e. RR /\ y e. RR ) -> ( x + ( _i x. y ) ) = ( ( Re ` ( x + ( _i x. y ) ) ) + ( _i x. ( Im ` ( x + ( _i x. y ) ) ) ) ) ) |
| 7 | id | |- ( A = ( x + ( _i x. y ) ) -> A = ( x + ( _i x. y ) ) ) |
|
| 8 | fveq2 | |- ( A = ( x + ( _i x. y ) ) -> ( Re ` A ) = ( Re ` ( x + ( _i x. y ) ) ) ) |
|
| 9 | fveq2 | |- ( A = ( x + ( _i x. y ) ) -> ( Im ` A ) = ( Im ` ( x + ( _i x. y ) ) ) ) |
|
| 10 | 9 | oveq2d | |- ( A = ( x + ( _i x. y ) ) -> ( _i x. ( Im ` A ) ) = ( _i x. ( Im ` ( x + ( _i x. y ) ) ) ) ) |
| 11 | 8 10 | oveq12d | |- ( A = ( x + ( _i x. y ) ) -> ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) = ( ( Re ` ( x + ( _i x. y ) ) ) + ( _i x. ( Im ` ( x + ( _i x. y ) ) ) ) ) ) |
| 12 | 7 11 | eqeq12d | |- ( A = ( x + ( _i x. y ) ) -> ( A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) <-> ( x + ( _i x. y ) ) = ( ( Re ` ( x + ( _i x. y ) ) ) + ( _i x. ( Im ` ( x + ( _i x. y ) ) ) ) ) ) ) |
| 13 | 6 12 | syl5ibrcom | |- ( ( x e. RR /\ y e. RR ) -> ( A = ( x + ( _i x. y ) ) -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) ) |
| 14 | 13 | rexlimivv | |- ( E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
| 15 | 1 14 | syl | |- ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |