This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the tangent function directly in terms of exp . (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanval3 | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( tan ` A ) = ( ( ( exp ` ( 2 x. ( _i x. A ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | simpl | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> A e. CC ) |
|
| 3 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 4 | 1 2 3 | sylancr | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. A ) e. CC ) |
| 5 | efcl | |- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
|
| 6 | 4 5 | syl | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( _i x. A ) ) e. CC ) |
| 7 | negicn | |- -u _i e. CC |
|
| 8 | mulcl | |- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
|
| 9 | 7 2 8 | sylancr | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( -u _i x. A ) e. CC ) |
| 10 | efcl | |- ( ( -u _i x. A ) e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
|
| 11 | 9 10 | syl | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( -u _i x. A ) ) e. CC ) |
| 12 | 6 11 | subcld | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC ) |
| 13 | 6 11 | addcld | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC ) |
| 14 | mulcl | |- ( ( _i e. CC /\ ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC ) -> ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) e. CC ) |
|
| 15 | 1 13 14 | sylancr | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) e. CC ) |
| 16 | 2z | |- 2 e. ZZ |
|
| 17 | efexp | |- ( ( ( _i x. A ) e. CC /\ 2 e. ZZ ) -> ( exp ` ( 2 x. ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) ^ 2 ) ) |
|
| 18 | 4 16 17 | sylancl | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( 2 x. ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) ^ 2 ) ) |
| 19 | 6 | sqvald | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) ^ 2 ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) ) |
| 20 | 18 19 | eqtrd | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( 2 x. ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) ) |
| 21 | mulneg1 | |- ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. A ) = -u ( _i x. A ) ) |
|
| 22 | 1 2 21 | sylancr | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( -u _i x. A ) = -u ( _i x. A ) ) |
| 23 | 22 | fveq2d | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( -u _i x. A ) ) = ( exp ` -u ( _i x. A ) ) ) |
| 24 | 23 | oveq2d | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` -u ( _i x. A ) ) ) ) |
| 25 | efcan | |- ( ( _i x. A ) e. CC -> ( ( exp ` ( _i x. A ) ) x. ( exp ` -u ( _i x. A ) ) ) = 1 ) |
|
| 26 | 4 25 | syl | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` -u ( _i x. A ) ) ) = 1 ) |
| 27 | 24 26 | eqtr2d | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> 1 = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) |
| 28 | 20 27 | oveq12d | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) ) |
| 29 | 6 6 11 | adddid | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) ) |
| 30 | 28 29 | eqtr4d | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) = ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) |
| 31 | 30 | oveq2d | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) ) = ( _i x. ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
| 32 | 1 | a1i | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> _i e. CC ) |
| 33 | 32 6 13 | mul12d | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
| 34 | 31 33 | eqtrd | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) ) = ( ( exp ` ( _i x. A ) ) x. ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
| 35 | 2cn | |- 2 e. CC |
|
| 36 | mulcl | |- ( ( 2 e. CC /\ ( _i x. A ) e. CC ) -> ( 2 x. ( _i x. A ) ) e. CC ) |
|
| 37 | 35 4 36 | sylancr | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( 2 x. ( _i x. A ) ) e. CC ) |
| 38 | efcl | |- ( ( 2 x. ( _i x. A ) ) e. CC -> ( exp ` ( 2 x. ( _i x. A ) ) ) e. CC ) |
|
| 39 | 37 38 | syl | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( 2 x. ( _i x. A ) ) ) e. CC ) |
| 40 | ax-1cn | |- 1 e. CC |
|
| 41 | addcl | |- ( ( ( exp ` ( 2 x. ( _i x. A ) ) ) e. CC /\ 1 e. CC ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) e. CC ) |
|
| 42 | 39 40 41 | sylancl | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) e. CC ) |
| 43 | ine0 | |- _i =/= 0 |
|
| 44 | 43 | a1i | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> _i =/= 0 ) |
| 45 | simpr | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) |
|
| 46 | 32 42 44 45 | mulne0d | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) ) =/= 0 ) |
| 47 | 34 46 | eqnetrrd | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) x. ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) =/= 0 ) |
| 48 | 6 15 47 | mulne0bbd | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) =/= 0 ) |
| 49 | efne0 | |- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) =/= 0 ) |
|
| 50 | 4 49 | syl | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( _i x. A ) ) =/= 0 ) |
| 51 | 12 15 6 48 50 | divcan5d | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / ( ( exp ` ( _i x. A ) ) x. ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
| 52 | 20 27 | oveq12d | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) - 1 ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) - ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) ) |
| 53 | 6 6 11 | subdid | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) - ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) ) |
| 54 | 52 53 | eqtr4d | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) - 1 ) = ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) ) |
| 55 | 54 34 | oveq12d | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( ( exp ` ( 2 x. ( _i x. A ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) ) ) = ( ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / ( ( exp ` ( _i x. A ) ) x. ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) ) |
| 56 | cosval | |- ( A e. CC -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
|
| 57 | 56 | adantr | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
| 58 | 2cnd | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> 2 e. CC ) |
|
| 59 | 32 13 48 | mulne0bbd | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) =/= 0 ) |
| 60 | 2ne0 | |- 2 =/= 0 |
|
| 61 | 60 | a1i | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> 2 =/= 0 ) |
| 62 | 13 58 59 61 | divne0d | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) =/= 0 ) |
| 63 | 57 62 | eqnetrd | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( cos ` A ) =/= 0 ) |
| 64 | tanval2 | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
|
| 65 | 63 64 | syldan | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( tan ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
| 66 | 51 55 65 | 3eqtr4rd | |- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( tan ` A ) = ( ( ( exp ` ( 2 x. ( _i x. A ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) ) ) ) |