This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Stirling's approximation formula for n factorial. The proof follows two major steps: first it is proven that S and n factorial are asymptotically equivalent, up to an unknown constant. Then, using Wallis' formula for π it is proven that the unknown constant is the square root of π and then the exact Stirling's formula is established. This is Metamath 100 proof #90. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | stirling.1 | |- S = ( n e. NN0 |-> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) |
|
| Assertion | stirling | |- ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) ~~> 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirling.1 | |- S = ( n e. NN0 |-> ( ( sqrt ` ( ( 2 x. _pi ) x. n ) ) x. ( ( n / _e ) ^ n ) ) ) |
|
| 2 | eqid | |- ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| 3 | eqid | |- ( n e. NN |-> ( log ` ( ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ` n ) ) ) = ( n e. NN |-> ( log ` ( ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ` n ) ) ) |
|
| 4 | 2 3 | stirlinglem14 | |- E. c e. RR+ ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ~~> c |
| 5 | nfv | |- F/ n c e. RR+ |
|
| 6 | nfmpt1 | |- F/_ n ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| 7 | nfcv | |- F/_ n ~~> |
|
| 8 | nfcv | |- F/_ n c |
|
| 9 | 6 7 8 | nfbr | |- F/ n ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ~~> c |
| 10 | 5 9 | nfan | |- F/ n ( c e. RR+ /\ ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ~~> c ) |
| 11 | eqid | |- ( n e. NN |-> ( ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ` ( 2 x. n ) ) ) = ( n e. NN |-> ( ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ` ( 2 x. n ) ) ) |
|
| 12 | eqid | |- ( n e. NN |-> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( n e. NN |-> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) |
|
| 13 | eqid | |- ( n e. NN |-> ( ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) = ( n e. NN |-> ( ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) |
|
| 14 | eqid | |- ( n e. NN |-> ( ( ( ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ` n ) ^ 4 ) / ( ( ( n e. NN |-> ( ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ` ( 2 x. n ) ) ) ` n ) ^ 2 ) ) ) = ( n e. NN |-> ( ( ( ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ` n ) ^ 4 ) / ( ( ( n e. NN |-> ( ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ` ( 2 x. n ) ) ) ` n ) ^ 2 ) ) ) |
|
| 15 | eqid | |- ( n e. NN |-> ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) = ( n e. NN |-> ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) |
|
| 16 | simpl | |- ( ( c e. RR+ /\ ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ~~> c ) -> c e. RR+ ) |
|
| 17 | simpr | |- ( ( c e. RR+ /\ ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ~~> c ) -> ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ~~> c ) |
|
| 18 | 10 1 2 11 12 13 14 15 16 17 | stirlinglem15 | |- ( ( c e. RR+ /\ ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ~~> c ) -> ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) ~~> 1 ) |
| 19 | 18 | rexlimiva | |- ( E. c e. RR+ ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ~~> c -> ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) ~~> 1 ) |
| 20 | 4 19 | ax-mp | |- ( n e. NN |-> ( ( ! ` n ) / ( S ` n ) ) ) ~~> 1 |