This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternative version of Wallis' formula for π ; this second formula uses factorials and it is later used to prove Stirling's approximation formula. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wallispi2.1 | |- V = ( n e. NN |-> ( ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) |
|
| Assertion | wallispi2 | |- V ~~> ( _pi / 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wallispi2.1 | |- V = ( n e. NN |-> ( ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) |
|
| 2 | eqid | |- ( k e. NN |-> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) ) = ( k e. NN |-> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) ) |
|
| 3 | 1cnd | |- ( n e. NN -> 1 e. CC ) |
|
| 4 | 2cnd | |- ( n e. NN -> 2 e. CC ) |
|
| 5 | nncn | |- ( n e. NN -> n e. CC ) |
|
| 6 | 4 5 | mulcld | |- ( n e. NN -> ( 2 x. n ) e. CC ) |
| 7 | 6 3 | addcld | |- ( n e. NN -> ( ( 2 x. n ) + 1 ) e. CC ) |
| 8 | elnnuz | |- ( n e. NN <-> n e. ( ZZ>= ` 1 ) ) |
|
| 9 | 8 | biimpi | |- ( n e. NN -> n e. ( ZZ>= ` 1 ) ) |
| 10 | eqidd | |- ( m e. ( 1 ... n ) -> ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) = ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) |
|
| 11 | simpr | |- ( ( m e. ( 1 ... n ) /\ k = m ) -> k = m ) |
|
| 12 | 11 | oveq2d | |- ( ( m e. ( 1 ... n ) /\ k = m ) -> ( 2 x. k ) = ( 2 x. m ) ) |
| 13 | 12 | oveq1d | |- ( ( m e. ( 1 ... n ) /\ k = m ) -> ( ( 2 x. k ) ^ 4 ) = ( ( 2 x. m ) ^ 4 ) ) |
| 14 | 12 | oveq1d | |- ( ( m e. ( 1 ... n ) /\ k = m ) -> ( ( 2 x. k ) - 1 ) = ( ( 2 x. m ) - 1 ) ) |
| 15 | 12 14 | oveq12d | |- ( ( m e. ( 1 ... n ) /\ k = m ) -> ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) = ( ( 2 x. m ) x. ( ( 2 x. m ) - 1 ) ) ) |
| 16 | 15 | oveq1d | |- ( ( m e. ( 1 ... n ) /\ k = m ) -> ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) = ( ( ( 2 x. m ) x. ( ( 2 x. m ) - 1 ) ) ^ 2 ) ) |
| 17 | 13 16 | oveq12d | |- ( ( m e. ( 1 ... n ) /\ k = m ) -> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) = ( ( ( 2 x. m ) ^ 4 ) / ( ( ( 2 x. m ) x. ( ( 2 x. m ) - 1 ) ) ^ 2 ) ) ) |
| 18 | elfznn | |- ( m e. ( 1 ... n ) -> m e. NN ) |
|
| 19 | 2cnd | |- ( m e. ( 1 ... n ) -> 2 e. CC ) |
|
| 20 | 18 | nncnd | |- ( m e. ( 1 ... n ) -> m e. CC ) |
| 21 | 19 20 | mulcld | |- ( m e. ( 1 ... n ) -> ( 2 x. m ) e. CC ) |
| 22 | 4nn0 | |- 4 e. NN0 |
|
| 23 | 22 | a1i | |- ( m e. ( 1 ... n ) -> 4 e. NN0 ) |
| 24 | 21 23 | expcld | |- ( m e. ( 1 ... n ) -> ( ( 2 x. m ) ^ 4 ) e. CC ) |
| 25 | 1cnd | |- ( m e. ( 1 ... n ) -> 1 e. CC ) |
|
| 26 | 21 25 | subcld | |- ( m e. ( 1 ... n ) -> ( ( 2 x. m ) - 1 ) e. CC ) |
| 27 | 21 26 | mulcld | |- ( m e. ( 1 ... n ) -> ( ( 2 x. m ) x. ( ( 2 x. m ) - 1 ) ) e. CC ) |
| 28 | 27 | sqcld | |- ( m e. ( 1 ... n ) -> ( ( ( 2 x. m ) x. ( ( 2 x. m ) - 1 ) ) ^ 2 ) e. CC ) |
| 29 | 2ne0 | |- 2 =/= 0 |
|
| 30 | 29 | a1i | |- ( m e. ( 1 ... n ) -> 2 =/= 0 ) |
| 31 | 18 | nnne0d | |- ( m e. ( 1 ... n ) -> m =/= 0 ) |
| 32 | 19 20 30 31 | mulne0d | |- ( m e. ( 1 ... n ) -> ( 2 x. m ) =/= 0 ) |
| 33 | 1red | |- ( m e. ( 1 ... n ) -> 1 e. RR ) |
|
| 34 | 2re | |- 2 e. RR |
|
| 35 | 34 | a1i | |- ( m e. ( 1 ... n ) -> 2 e. RR ) |
| 36 | 35 33 | remulcld | |- ( m e. ( 1 ... n ) -> ( 2 x. 1 ) e. RR ) |
| 37 | 18 | nnred | |- ( m e. ( 1 ... n ) -> m e. RR ) |
| 38 | 35 37 | remulcld | |- ( m e. ( 1 ... n ) -> ( 2 x. m ) e. RR ) |
| 39 | 1lt2 | |- 1 < 2 |
|
| 40 | 39 | a1i | |- ( m e. ( 1 ... n ) -> 1 < 2 ) |
| 41 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 42 | 40 41 | breqtrrdi | |- ( m e. ( 1 ... n ) -> 1 < ( 2 x. 1 ) ) |
| 43 | 0le2 | |- 0 <_ 2 |
|
| 44 | 43 | a1i | |- ( m e. ( 1 ... n ) -> 0 <_ 2 ) |
| 45 | elfzle1 | |- ( m e. ( 1 ... n ) -> 1 <_ m ) |
|
| 46 | 33 37 35 44 45 | lemul2ad | |- ( m e. ( 1 ... n ) -> ( 2 x. 1 ) <_ ( 2 x. m ) ) |
| 47 | 33 36 38 42 46 | ltletrd | |- ( m e. ( 1 ... n ) -> 1 < ( 2 x. m ) ) |
| 48 | 33 47 | gtned | |- ( m e. ( 1 ... n ) -> ( 2 x. m ) =/= 1 ) |
| 49 | 21 25 48 | subne0d | |- ( m e. ( 1 ... n ) -> ( ( 2 x. m ) - 1 ) =/= 0 ) |
| 50 | 21 26 32 49 | mulne0d | |- ( m e. ( 1 ... n ) -> ( ( 2 x. m ) x. ( ( 2 x. m ) - 1 ) ) =/= 0 ) |
| 51 | 2z | |- 2 e. ZZ |
|
| 52 | 51 | a1i | |- ( m e. ( 1 ... n ) -> 2 e. ZZ ) |
| 53 | 27 50 52 | expne0d | |- ( m e. ( 1 ... n ) -> ( ( ( 2 x. m ) x. ( ( 2 x. m ) - 1 ) ) ^ 2 ) =/= 0 ) |
| 54 | 24 28 53 | divcld | |- ( m e. ( 1 ... n ) -> ( ( ( 2 x. m ) ^ 4 ) / ( ( ( 2 x. m ) x. ( ( 2 x. m ) - 1 ) ) ^ 2 ) ) e. CC ) |
| 55 | 10 17 18 54 | fvmptd | |- ( m e. ( 1 ... n ) -> ( ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ` m ) = ( ( ( 2 x. m ) ^ 4 ) / ( ( ( 2 x. m ) x. ( ( 2 x. m ) - 1 ) ) ^ 2 ) ) ) |
| 56 | 55 54 | eqeltrd | |- ( m e. ( 1 ... n ) -> ( ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ` m ) e. CC ) |
| 57 | 56 | adantl | |- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ` m ) e. CC ) |
| 58 | mulcl | |- ( ( m e. CC /\ w e. CC ) -> ( m x. w ) e. CC ) |
|
| 59 | 58 | adantl | |- ( ( n e. NN /\ ( m e. CC /\ w e. CC ) ) -> ( m x. w ) e. CC ) |
| 60 | 9 57 59 | seqcl | |- ( n e. NN -> ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) e. CC ) |
| 61 | 2nn | |- 2 e. NN |
|
| 62 | 61 | a1i | |- ( n e. NN -> 2 e. NN ) |
| 63 | id | |- ( n e. NN -> n e. NN ) |
|
| 64 | 62 63 | nnmulcld | |- ( n e. NN -> ( 2 x. n ) e. NN ) |
| 65 | 64 | peano2nnd | |- ( n e. NN -> ( ( 2 x. n ) + 1 ) e. NN ) |
| 66 | 65 | nnne0d | |- ( n e. NN -> ( ( 2 x. n ) + 1 ) =/= 0 ) |
| 67 | 3 7 60 66 | div32d | |- ( n e. NN -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) ) = ( 1 x. ( ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) / ( ( 2 x. n ) + 1 ) ) ) ) |
| 68 | 60 7 66 | divcld | |- ( n e. NN -> ( ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) / ( ( 2 x. n ) + 1 ) ) e. CC ) |
| 69 | 68 | mullidd | |- ( n e. NN -> ( 1 x. ( ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) / ( ( 2 x. n ) + 1 ) ) ) = ( ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) / ( ( 2 x. n ) + 1 ) ) ) |
| 70 | wallispi2lem2 | |- ( n e. NN -> ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) = ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) ) |
|
| 71 | 70 | oveq1d | |- ( n e. NN -> ( ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) / ( ( 2 x. n ) + 1 ) ) = ( ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) |
| 72 | 67 69 71 | 3eqtrd | |- ( n e. NN -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) ) = ( ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) |
| 73 | 72 | mpteq2ia | |- ( n e. NN |-> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) ) ) = ( n e. NN |-> ( ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) |
| 74 | wallispi2lem1 | |- ( n e. NN -> ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) ) ) ` n ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) ) ) |
|
| 75 | 74 | mpteq2ia | |- ( n e. NN |-> ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) ) ) ` n ) ) = ( n e. NN |-> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) ) ) |
| 76 | 73 75 1 | 3eqtr4ri | |- V = ( n e. NN |-> ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) ) ) ` n ) ) |
| 77 | 2 76 | wallispi | |- V ~~> ( _pi / 2 ) |