This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of climmul using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climmulf.1 | |- F/ k ph |
|
| climmulf.2 | |- F/_ k F |
||
| climmulf.3 | |- F/_ k G |
||
| climmulf.4 | |- F/_ k H |
||
| climmulf.5 | |- Z = ( ZZ>= ` M ) |
||
| climmulf.6 | |- ( ph -> M e. ZZ ) |
||
| climmulf.7 | |- ( ph -> F ~~> A ) |
||
| climmulf.8 | |- ( ph -> H e. X ) |
||
| climmulf.9 | |- ( ph -> G ~~> B ) |
||
| climmulf.10 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| climmulf.11 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
||
| climmulf.12 | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) |
||
| Assertion | climmulf | |- ( ph -> H ~~> ( A x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climmulf.1 | |- F/ k ph |
|
| 2 | climmulf.2 | |- F/_ k F |
|
| 3 | climmulf.3 | |- F/_ k G |
|
| 4 | climmulf.4 | |- F/_ k H |
|
| 5 | climmulf.5 | |- Z = ( ZZ>= ` M ) |
|
| 6 | climmulf.6 | |- ( ph -> M e. ZZ ) |
|
| 7 | climmulf.7 | |- ( ph -> F ~~> A ) |
|
| 8 | climmulf.8 | |- ( ph -> H e. X ) |
|
| 9 | climmulf.9 | |- ( ph -> G ~~> B ) |
|
| 10 | climmulf.10 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 11 | climmulf.11 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
|
| 12 | climmulf.12 | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) |
|
| 13 | nfcv | |- F/_ k j |
|
| 14 | 13 | nfel1 | |- F/ k j e. Z |
| 15 | 1 14 | nfan | |- F/ k ( ph /\ j e. Z ) |
| 16 | 2 13 | nffv | |- F/_ k ( F ` j ) |
| 17 | 16 | nfel1 | |- F/ k ( F ` j ) e. CC |
| 18 | 15 17 | nfim | |- F/ k ( ( ph /\ j e. Z ) -> ( F ` j ) e. CC ) |
| 19 | eleq1w | |- ( k = j -> ( k e. Z <-> j e. Z ) ) |
|
| 20 | 19 | anbi2d | |- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
| 21 | fveq2 | |- ( k = j -> ( F ` k ) = ( F ` j ) ) |
|
| 22 | 21 | eleq1d | |- ( k = j -> ( ( F ` k ) e. CC <-> ( F ` j ) e. CC ) ) |
| 23 | 20 22 | imbi12d | |- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) <-> ( ( ph /\ j e. Z ) -> ( F ` j ) e. CC ) ) ) |
| 24 | 18 23 10 | chvarfv | |- ( ( ph /\ j e. Z ) -> ( F ` j ) e. CC ) |
| 25 | 3 13 | nffv | |- F/_ k ( G ` j ) |
| 26 | 25 | nfel1 | |- F/ k ( G ` j ) e. CC |
| 27 | 15 26 | nfim | |- F/ k ( ( ph /\ j e. Z ) -> ( G ` j ) e. CC ) |
| 28 | fveq2 | |- ( k = j -> ( G ` k ) = ( G ` j ) ) |
|
| 29 | 28 | eleq1d | |- ( k = j -> ( ( G ` k ) e. CC <-> ( G ` j ) e. CC ) ) |
| 30 | 20 29 | imbi12d | |- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) <-> ( ( ph /\ j e. Z ) -> ( G ` j ) e. CC ) ) ) |
| 31 | 27 30 11 | chvarfv | |- ( ( ph /\ j e. Z ) -> ( G ` j ) e. CC ) |
| 32 | 4 13 | nffv | |- F/_ k ( H ` j ) |
| 33 | nfcv | |- F/_ k x. |
|
| 34 | 16 33 25 | nfov | |- F/_ k ( ( F ` j ) x. ( G ` j ) ) |
| 35 | 32 34 | nfeq | |- F/ k ( H ` j ) = ( ( F ` j ) x. ( G ` j ) ) |
| 36 | 15 35 | nfim | |- F/ k ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( F ` j ) x. ( G ` j ) ) ) |
| 37 | fveq2 | |- ( k = j -> ( H ` k ) = ( H ` j ) ) |
|
| 38 | 21 28 | oveq12d | |- ( k = j -> ( ( F ` k ) x. ( G ` k ) ) = ( ( F ` j ) x. ( G ` j ) ) ) |
| 39 | 37 38 | eqeq12d | |- ( k = j -> ( ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) <-> ( H ` j ) = ( ( F ` j ) x. ( G ` j ) ) ) ) |
| 40 | 20 39 | imbi12d | |- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) <-> ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( F ` j ) x. ( G ` j ) ) ) ) ) |
| 41 | 36 40 12 | chvarfv | |- ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( F ` j ) x. ( G ` j ) ) ) |
| 42 | 5 6 7 8 9 24 31 41 | climmul | |- ( ph -> H ~~> ( A x. B ) ) |