This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple limit of fractions is computed. (Contributed by Glauco Siliprandi, 30-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem1.1 | |- H = ( n e. NN |-> ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) |
|
| stirlinglem1.2 | |- F = ( n e. NN |-> ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) |
||
| stirlinglem1.3 | |- G = ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) |
||
| stirlinglem1.4 | |- L = ( n e. NN |-> ( 1 / n ) ) |
||
| Assertion | stirlinglem1 | |- H ~~> ( 1 / 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem1.1 | |- H = ( n e. NN |-> ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) |
|
| 2 | stirlinglem1.2 | |- F = ( n e. NN |-> ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) |
|
| 3 | stirlinglem1.3 | |- G = ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) |
|
| 4 | stirlinglem1.4 | |- L = ( n e. NN |-> ( 1 / n ) ) |
|
| 5 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 6 | 1zzd | |- ( T. -> 1 e. ZZ ) |
|
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | divcnv | |- ( 1 e. CC -> ( n e. NN |-> ( 1 / n ) ) ~~> 0 ) |
|
| 9 | 7 8 | ax-mp | |- ( n e. NN |-> ( 1 / n ) ) ~~> 0 |
| 10 | 4 9 | eqbrtri | |- L ~~> 0 |
| 11 | 10 | a1i | |- ( T. -> L ~~> 0 ) |
| 12 | nnex | |- NN e. _V |
|
| 13 | 12 | mptex | |- ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) e. _V |
| 14 | 3 13 | eqeltri | |- G e. _V |
| 15 | 14 | a1i | |- ( T. -> G e. _V ) |
| 16 | 4 | a1i | |- ( k e. NN -> L = ( n e. NN |-> ( 1 / n ) ) ) |
| 17 | simpr | |- ( ( k e. NN /\ n = k ) -> n = k ) |
|
| 18 | 17 | oveq2d | |- ( ( k e. NN /\ n = k ) -> ( 1 / n ) = ( 1 / k ) ) |
| 19 | id | |- ( k e. NN -> k e. NN ) |
|
| 20 | nnrp | |- ( k e. NN -> k e. RR+ ) |
|
| 21 | 20 | rpreccld | |- ( k e. NN -> ( 1 / k ) e. RR+ ) |
| 22 | 16 18 19 21 | fvmptd | |- ( k e. NN -> ( L ` k ) = ( 1 / k ) ) |
| 23 | nnrecre | |- ( k e. NN -> ( 1 / k ) e. RR ) |
|
| 24 | 22 23 | eqeltrd | |- ( k e. NN -> ( L ` k ) e. RR ) |
| 25 | 24 | adantl | |- ( ( T. /\ k e. NN ) -> ( L ` k ) e. RR ) |
| 26 | 3 | a1i | |- ( k e. NN -> G = ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) |
| 27 | 17 | oveq2d | |- ( ( k e. NN /\ n = k ) -> ( 2 x. n ) = ( 2 x. k ) ) |
| 28 | 27 | oveq1d | |- ( ( k e. NN /\ n = k ) -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. k ) + 1 ) ) |
| 29 | 28 | oveq2d | |- ( ( k e. NN /\ n = k ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) = ( 1 / ( ( 2 x. k ) + 1 ) ) ) |
| 30 | 2re | |- 2 e. RR |
|
| 31 | 30 | a1i | |- ( k e. NN -> 2 e. RR ) |
| 32 | nnre | |- ( k e. NN -> k e. RR ) |
|
| 33 | 31 32 | remulcld | |- ( k e. NN -> ( 2 x. k ) e. RR ) |
| 34 | 0le2 | |- 0 <_ 2 |
|
| 35 | 34 | a1i | |- ( k e. NN -> 0 <_ 2 ) |
| 36 | 20 | rpge0d | |- ( k e. NN -> 0 <_ k ) |
| 37 | 31 32 35 36 | mulge0d | |- ( k e. NN -> 0 <_ ( 2 x. k ) ) |
| 38 | 33 37 | ge0p1rpd | |- ( k e. NN -> ( ( 2 x. k ) + 1 ) e. RR+ ) |
| 39 | 38 | rpreccld | |- ( k e. NN -> ( 1 / ( ( 2 x. k ) + 1 ) ) e. RR+ ) |
| 40 | 26 29 19 39 | fvmptd | |- ( k e. NN -> ( G ` k ) = ( 1 / ( ( 2 x. k ) + 1 ) ) ) |
| 41 | 39 | rpred | |- ( k e. NN -> ( 1 / ( ( 2 x. k ) + 1 ) ) e. RR ) |
| 42 | 40 41 | eqeltrd | |- ( k e. NN -> ( G ` k ) e. RR ) |
| 43 | 42 | adantl | |- ( ( T. /\ k e. NN ) -> ( G ` k ) e. RR ) |
| 44 | 1red | |- ( k e. NN -> 1 e. RR ) |
|
| 45 | 0le1 | |- 0 <_ 1 |
|
| 46 | 45 | a1i | |- ( k e. NN -> 0 <_ 1 ) |
| 47 | 33 44 | readdcld | |- ( k e. NN -> ( ( 2 x. k ) + 1 ) e. RR ) |
| 48 | nncn | |- ( k e. NN -> k e. CC ) |
|
| 49 | 48 | mullidd | |- ( k e. NN -> ( 1 x. k ) = k ) |
| 50 | 1lt2 | |- 1 < 2 |
|
| 51 | 50 | a1i | |- ( k e. NN -> 1 < 2 ) |
| 52 | 44 31 20 51 | ltmul1dd | |- ( k e. NN -> ( 1 x. k ) < ( 2 x. k ) ) |
| 53 | 49 52 | eqbrtrrd | |- ( k e. NN -> k < ( 2 x. k ) ) |
| 54 | 33 | ltp1d | |- ( k e. NN -> ( 2 x. k ) < ( ( 2 x. k ) + 1 ) ) |
| 55 | 32 33 47 53 54 | lttrd | |- ( k e. NN -> k < ( ( 2 x. k ) + 1 ) ) |
| 56 | 32 47 55 | ltled | |- ( k e. NN -> k <_ ( ( 2 x. k ) + 1 ) ) |
| 57 | 20 38 44 46 56 | lediv2ad | |- ( k e. NN -> ( 1 / ( ( 2 x. k ) + 1 ) ) <_ ( 1 / k ) ) |
| 58 | 57 40 22 | 3brtr4d | |- ( k e. NN -> ( G ` k ) <_ ( L ` k ) ) |
| 59 | 58 | adantl | |- ( ( T. /\ k e. NN ) -> ( G ` k ) <_ ( L ` k ) ) |
| 60 | 39 | rpge0d | |- ( k e. NN -> 0 <_ ( 1 / ( ( 2 x. k ) + 1 ) ) ) |
| 61 | 60 40 | breqtrrd | |- ( k e. NN -> 0 <_ ( G ` k ) ) |
| 62 | 61 | adantl | |- ( ( T. /\ k e. NN ) -> 0 <_ ( G ` k ) ) |
| 63 | 5 6 11 15 25 43 59 62 | climsqz2 | |- ( T. -> G ~~> 0 ) |
| 64 | 1cnd | |- ( T. -> 1 e. CC ) |
|
| 65 | 12 | mptex | |- ( n e. NN |-> ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) e. _V |
| 66 | 2 65 | eqeltri | |- F e. _V |
| 67 | 66 | a1i | |- ( T. -> F e. _V ) |
| 68 | 43 | recnd | |- ( ( T. /\ k e. NN ) -> ( G ` k ) e. CC ) |
| 69 | 2 | a1i | |- ( k e. NN -> F = ( n e. NN |-> ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 70 | 29 | oveq2d | |- ( ( k e. NN /\ n = k ) -> ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) = ( 1 - ( 1 / ( ( 2 x. k ) + 1 ) ) ) ) |
| 71 | 1cnd | |- ( k e. NN -> 1 e. CC ) |
|
| 72 | 2cnd | |- ( k e. NN -> 2 e. CC ) |
|
| 73 | 72 48 | mulcld | |- ( k e. NN -> ( 2 x. k ) e. CC ) |
| 74 | 73 71 | addcld | |- ( k e. NN -> ( ( 2 x. k ) + 1 ) e. CC ) |
| 75 | 38 | rpne0d | |- ( k e. NN -> ( ( 2 x. k ) + 1 ) =/= 0 ) |
| 76 | 74 75 | reccld | |- ( k e. NN -> ( 1 / ( ( 2 x. k ) + 1 ) ) e. CC ) |
| 77 | 71 76 | subcld | |- ( k e. NN -> ( 1 - ( 1 / ( ( 2 x. k ) + 1 ) ) ) e. CC ) |
| 78 | 69 70 19 77 | fvmptd | |- ( k e. NN -> ( F ` k ) = ( 1 - ( 1 / ( ( 2 x. k ) + 1 ) ) ) ) |
| 79 | 40 | eqcomd | |- ( k e. NN -> ( 1 / ( ( 2 x. k ) + 1 ) ) = ( G ` k ) ) |
| 80 | 79 | oveq2d | |- ( k e. NN -> ( 1 - ( 1 / ( ( 2 x. k ) + 1 ) ) ) = ( 1 - ( G ` k ) ) ) |
| 81 | 78 80 | eqtrd | |- ( k e. NN -> ( F ` k ) = ( 1 - ( G ` k ) ) ) |
| 82 | 81 | adantl | |- ( ( T. /\ k e. NN ) -> ( F ` k ) = ( 1 - ( G ` k ) ) ) |
| 83 | 5 6 63 64 67 68 82 | climsubc2 | |- ( T. -> F ~~> ( 1 - 0 ) ) |
| 84 | 1m0e1 | |- ( 1 - 0 ) = 1 |
|
| 85 | 83 84 | breqtrdi | |- ( T. -> F ~~> 1 ) |
| 86 | 64 | halfcld | |- ( T. -> ( 1 / 2 ) e. CC ) |
| 87 | 12 | mptex | |- ( n e. NN |-> ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) e. _V |
| 88 | 1 87 | eqeltri | |- H e. _V |
| 89 | 88 | a1i | |- ( T. -> H e. _V ) |
| 90 | 78 77 | eqeltrd | |- ( k e. NN -> ( F ` k ) e. CC ) |
| 91 | 90 | adantl | |- ( ( T. /\ k e. NN ) -> ( F ` k ) e. CC ) |
| 92 | nncn | |- ( n e. NN -> n e. CC ) |
|
| 93 | 92 | sqcld | |- ( n e. NN -> ( n ^ 2 ) e. CC ) |
| 94 | 93 | mullidd | |- ( n e. NN -> ( 1 x. ( n ^ 2 ) ) = ( n ^ 2 ) ) |
| 95 | 94 | eqcomd | |- ( n e. NN -> ( n ^ 2 ) = ( 1 x. ( n ^ 2 ) ) ) |
| 96 | 2cnd | |- ( n e. NN -> 2 e. CC ) |
|
| 97 | 96 92 | mulcld | |- ( n e. NN -> ( 2 x. n ) e. CC ) |
| 98 | 1cnd | |- ( n e. NN -> 1 e. CC ) |
|
| 99 | 92 97 98 | adddid | |- ( n e. NN -> ( n x. ( ( 2 x. n ) + 1 ) ) = ( ( n x. ( 2 x. n ) ) + ( n x. 1 ) ) ) |
| 100 | 92 96 92 | mul12d | |- ( n e. NN -> ( n x. ( 2 x. n ) ) = ( 2 x. ( n x. n ) ) ) |
| 101 | 92 | sqvald | |- ( n e. NN -> ( n ^ 2 ) = ( n x. n ) ) |
| 102 | 101 | eqcomd | |- ( n e. NN -> ( n x. n ) = ( n ^ 2 ) ) |
| 103 | 102 | oveq2d | |- ( n e. NN -> ( 2 x. ( n x. n ) ) = ( 2 x. ( n ^ 2 ) ) ) |
| 104 | 100 103 | eqtrd | |- ( n e. NN -> ( n x. ( 2 x. n ) ) = ( 2 x. ( n ^ 2 ) ) ) |
| 105 | 92 | mulridd | |- ( n e. NN -> ( n x. 1 ) = n ) |
| 106 | 104 105 | oveq12d | |- ( n e. NN -> ( ( n x. ( 2 x. n ) ) + ( n x. 1 ) ) = ( ( 2 x. ( n ^ 2 ) ) + n ) ) |
| 107 | 2ne0 | |- 2 =/= 0 |
|
| 108 | 107 | a1i | |- ( n e. NN -> 2 =/= 0 ) |
| 109 | 92 96 108 | divcan2d | |- ( n e. NN -> ( 2 x. ( n / 2 ) ) = n ) |
| 110 | 109 | eqcomd | |- ( n e. NN -> n = ( 2 x. ( n / 2 ) ) ) |
| 111 | 110 | oveq2d | |- ( n e. NN -> ( ( 2 x. ( n ^ 2 ) ) + n ) = ( ( 2 x. ( n ^ 2 ) ) + ( 2 x. ( n / 2 ) ) ) ) |
| 112 | 92 | halfcld | |- ( n e. NN -> ( n / 2 ) e. CC ) |
| 113 | 96 93 112 | adddid | |- ( n e. NN -> ( 2 x. ( ( n ^ 2 ) + ( n / 2 ) ) ) = ( ( 2 x. ( n ^ 2 ) ) + ( 2 x. ( n / 2 ) ) ) ) |
| 114 | 111 113 | eqtr4d | |- ( n e. NN -> ( ( 2 x. ( n ^ 2 ) ) + n ) = ( 2 x. ( ( n ^ 2 ) + ( n / 2 ) ) ) ) |
| 115 | 99 106 114 | 3eqtrd | |- ( n e. NN -> ( n x. ( ( 2 x. n ) + 1 ) ) = ( 2 x. ( ( n ^ 2 ) + ( n / 2 ) ) ) ) |
| 116 | 95 115 | oveq12d | |- ( n e. NN -> ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) = ( ( 1 x. ( n ^ 2 ) ) / ( 2 x. ( ( n ^ 2 ) + ( n / 2 ) ) ) ) ) |
| 117 | 93 112 | addcld | |- ( n e. NN -> ( ( n ^ 2 ) + ( n / 2 ) ) e. CC ) |
| 118 | nnrp | |- ( n e. NN -> n e. RR+ ) |
|
| 119 | 2z | |- 2 e. ZZ |
|
| 120 | 119 | a1i | |- ( n e. NN -> 2 e. ZZ ) |
| 121 | 118 120 | rpexpcld | |- ( n e. NN -> ( n ^ 2 ) e. RR+ ) |
| 122 | 118 | rphalfcld | |- ( n e. NN -> ( n / 2 ) e. RR+ ) |
| 123 | 121 122 | rpaddcld | |- ( n e. NN -> ( ( n ^ 2 ) + ( n / 2 ) ) e. RR+ ) |
| 124 | 123 | rpne0d | |- ( n e. NN -> ( ( n ^ 2 ) + ( n / 2 ) ) =/= 0 ) |
| 125 | 98 96 93 117 108 124 | divmuldivd | |- ( n e. NN -> ( ( 1 / 2 ) x. ( ( n ^ 2 ) / ( ( n ^ 2 ) + ( n / 2 ) ) ) ) = ( ( 1 x. ( n ^ 2 ) ) / ( 2 x. ( ( n ^ 2 ) + ( n / 2 ) ) ) ) ) |
| 126 | 93 112 | pncand | |- ( n e. NN -> ( ( ( n ^ 2 ) + ( n / 2 ) ) - ( n / 2 ) ) = ( n ^ 2 ) ) |
| 127 | 126 | eqcomd | |- ( n e. NN -> ( n ^ 2 ) = ( ( ( n ^ 2 ) + ( n / 2 ) ) - ( n / 2 ) ) ) |
| 128 | 127 | oveq1d | |- ( n e. NN -> ( ( n ^ 2 ) / ( ( n ^ 2 ) + ( n / 2 ) ) ) = ( ( ( ( n ^ 2 ) + ( n / 2 ) ) - ( n / 2 ) ) / ( ( n ^ 2 ) + ( n / 2 ) ) ) ) |
| 129 | 117 112 117 124 | divsubdird | |- ( n e. NN -> ( ( ( ( n ^ 2 ) + ( n / 2 ) ) - ( n / 2 ) ) / ( ( n ^ 2 ) + ( n / 2 ) ) ) = ( ( ( ( n ^ 2 ) + ( n / 2 ) ) / ( ( n ^ 2 ) + ( n / 2 ) ) ) - ( ( n / 2 ) / ( ( n ^ 2 ) + ( n / 2 ) ) ) ) ) |
| 130 | 117 124 | dividd | |- ( n e. NN -> ( ( ( n ^ 2 ) + ( n / 2 ) ) / ( ( n ^ 2 ) + ( n / 2 ) ) ) = 1 ) |
| 131 | 130 | oveq1d | |- ( n e. NN -> ( ( ( ( n ^ 2 ) + ( n / 2 ) ) / ( ( n ^ 2 ) + ( n / 2 ) ) ) - ( ( n / 2 ) / ( ( n ^ 2 ) + ( n / 2 ) ) ) ) = ( 1 - ( ( n / 2 ) / ( ( n ^ 2 ) + ( n / 2 ) ) ) ) ) |
| 132 | 128 129 131 | 3eqtrd | |- ( n e. NN -> ( ( n ^ 2 ) / ( ( n ^ 2 ) + ( n / 2 ) ) ) = ( 1 - ( ( n / 2 ) / ( ( n ^ 2 ) + ( n / 2 ) ) ) ) ) |
| 133 | nnne0 | |- ( n e. NN -> n =/= 0 ) |
|
| 134 | 96 92 133 | divcld | |- ( n e. NN -> ( 2 / n ) e. CC ) |
| 135 | 96 92 108 133 | divne0d | |- ( n e. NN -> ( 2 / n ) =/= 0 ) |
| 136 | 112 117 134 124 135 | divcan5rd | |- ( n e. NN -> ( ( ( n / 2 ) x. ( 2 / n ) ) / ( ( ( n ^ 2 ) + ( n / 2 ) ) x. ( 2 / n ) ) ) = ( ( n / 2 ) / ( ( n ^ 2 ) + ( n / 2 ) ) ) ) |
| 137 | 92 96 133 108 | divcan6d | |- ( n e. NN -> ( ( n / 2 ) x. ( 2 / n ) ) = 1 ) |
| 138 | 93 112 134 | adddird | |- ( n e. NN -> ( ( ( n ^ 2 ) + ( n / 2 ) ) x. ( 2 / n ) ) = ( ( ( n ^ 2 ) x. ( 2 / n ) ) + ( ( n / 2 ) x. ( 2 / n ) ) ) ) |
| 139 | 93 96 92 133 | div12d | |- ( n e. NN -> ( ( n ^ 2 ) x. ( 2 / n ) ) = ( 2 x. ( ( n ^ 2 ) / n ) ) ) |
| 140 | 1e2m1 | |- 1 = ( 2 - 1 ) |
|
| 141 | 140 | oveq2i | |- ( n ^ 1 ) = ( n ^ ( 2 - 1 ) ) |
| 142 | 92 | exp1d | |- ( n e. NN -> ( n ^ 1 ) = n ) |
| 143 | 92 133 120 | expm1d | |- ( n e. NN -> ( n ^ ( 2 - 1 ) ) = ( ( n ^ 2 ) / n ) ) |
| 144 | 141 142 143 | 3eqtr3a | |- ( n e. NN -> n = ( ( n ^ 2 ) / n ) ) |
| 145 | 144 | eqcomd | |- ( n e. NN -> ( ( n ^ 2 ) / n ) = n ) |
| 146 | 145 | oveq2d | |- ( n e. NN -> ( 2 x. ( ( n ^ 2 ) / n ) ) = ( 2 x. n ) ) |
| 147 | 139 146 | eqtrd | |- ( n e. NN -> ( ( n ^ 2 ) x. ( 2 / n ) ) = ( 2 x. n ) ) |
| 148 | 147 137 | oveq12d | |- ( n e. NN -> ( ( ( n ^ 2 ) x. ( 2 / n ) ) + ( ( n / 2 ) x. ( 2 / n ) ) ) = ( ( 2 x. n ) + 1 ) ) |
| 149 | 138 148 | eqtrd | |- ( n e. NN -> ( ( ( n ^ 2 ) + ( n / 2 ) ) x. ( 2 / n ) ) = ( ( 2 x. n ) + 1 ) ) |
| 150 | 137 149 | oveq12d | |- ( n e. NN -> ( ( ( n / 2 ) x. ( 2 / n ) ) / ( ( ( n ^ 2 ) + ( n / 2 ) ) x. ( 2 / n ) ) ) = ( 1 / ( ( 2 x. n ) + 1 ) ) ) |
| 151 | 136 150 | eqtr3d | |- ( n e. NN -> ( ( n / 2 ) / ( ( n ^ 2 ) + ( n / 2 ) ) ) = ( 1 / ( ( 2 x. n ) + 1 ) ) ) |
| 152 | 151 | oveq2d | |- ( n e. NN -> ( 1 - ( ( n / 2 ) / ( ( n ^ 2 ) + ( n / 2 ) ) ) ) = ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) |
| 153 | 132 152 | eqtrd | |- ( n e. NN -> ( ( n ^ 2 ) / ( ( n ^ 2 ) + ( n / 2 ) ) ) = ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) |
| 154 | 153 | oveq2d | |- ( n e. NN -> ( ( 1 / 2 ) x. ( ( n ^ 2 ) / ( ( n ^ 2 ) + ( n / 2 ) ) ) ) = ( ( 1 / 2 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 155 | 116 125 154 | 3eqtr2d | |- ( n e. NN -> ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) = ( ( 1 / 2 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 156 | 155 | mpteq2ia | |- ( n e. NN |-> ( ( n ^ 2 ) / ( n x. ( ( 2 x. n ) + 1 ) ) ) ) = ( n e. NN |-> ( ( 1 / 2 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 157 | 1 156 | eqtri | |- H = ( n e. NN |-> ( ( 1 / 2 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) |
| 158 | 157 | a1i | |- ( k e. NN -> H = ( n e. NN |-> ( ( 1 / 2 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) ) |
| 159 | 70 | oveq2d | |- ( ( k e. NN /\ n = k ) -> ( ( 1 / 2 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) = ( ( 1 / 2 ) x. ( 1 - ( 1 / ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 160 | 71 | halfcld | |- ( k e. NN -> ( 1 / 2 ) e. CC ) |
| 161 | 160 77 | mulcld | |- ( k e. NN -> ( ( 1 / 2 ) x. ( 1 - ( 1 / ( ( 2 x. k ) + 1 ) ) ) ) e. CC ) |
| 162 | 158 159 19 161 | fvmptd | |- ( k e. NN -> ( H ` k ) = ( ( 1 / 2 ) x. ( 1 - ( 1 / ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 163 | 78 | oveq2d | |- ( k e. NN -> ( ( 1 / 2 ) x. ( F ` k ) ) = ( ( 1 / 2 ) x. ( 1 - ( 1 / ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 164 | 162 163 | eqtr4d | |- ( k e. NN -> ( H ` k ) = ( ( 1 / 2 ) x. ( F ` k ) ) ) |
| 165 | 164 | adantl | |- ( ( T. /\ k e. NN ) -> ( H ` k ) = ( ( 1 / 2 ) x. ( F ` k ) ) ) |
| 166 | 5 6 85 86 89 91 165 | climmulc2 | |- ( T. -> H ~~> ( ( 1 / 2 ) x. 1 ) ) |
| 167 | 166 | mptru | |- H ~~> ( ( 1 / 2 ) x. 1 ) |
| 168 | halfcn | |- ( 1 / 2 ) e. CC |
|
| 169 | 168 | mulridi | |- ( ( 1 / 2 ) x. 1 ) = ( 1 / 2 ) |
| 170 | 167 169 | breqtri | |- H ~~> ( 1 / 2 ) |