This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Square root of square. (Contributed by NM, 14-Jan-2006) (Revised by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtsq | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` ( A ^ 2 ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( A ^ 2 ) = ( A ^ 2 ) |
|
| 2 | resqcl | |- ( A e. RR -> ( A ^ 2 ) e. RR ) |
|
| 3 | sqge0 | |- ( A e. RR -> 0 <_ ( A ^ 2 ) ) |
|
| 4 | 2 3 | jca | |- ( A e. RR -> ( ( A ^ 2 ) e. RR /\ 0 <_ ( A ^ 2 ) ) ) |
| 5 | 4 | adantr | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( A ^ 2 ) e. RR /\ 0 <_ ( A ^ 2 ) ) ) |
| 6 | sqrtsq2 | |- ( ( ( ( A ^ 2 ) e. RR /\ 0 <_ ( A ^ 2 ) ) /\ ( A e. RR /\ 0 <_ A ) ) -> ( ( sqrt ` ( A ^ 2 ) ) = A <-> ( A ^ 2 ) = ( A ^ 2 ) ) ) |
|
| 7 | 5 6 | mpancom | |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqrt ` ( A ^ 2 ) ) = A <-> ( A ^ 2 ) = ( A ^ 2 ) ) ) |
| 8 | 1 7 | mpbiri | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` ( A ^ 2 ) ) = A ) |