This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efi4p.1 | |- F = ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) |
|
| Assertion | resin4p | |- ( A e. RR -> ( sin ` A ) = ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efi4p.1 | |- F = ( n e. NN0 |-> ( ( ( _i x. A ) ^ n ) / ( ! ` n ) ) ) |
|
| 2 | resinval | |- ( A e. RR -> ( sin ` A ) = ( Im ` ( exp ` ( _i x. A ) ) ) ) |
|
| 3 | recn | |- ( A e. RR -> A e. CC ) |
|
| 4 | 1 | efi4p | |- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |
| 5 | 3 4 | syl | |- ( A e. RR -> ( exp ` ( _i x. A ) ) = ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) |
| 6 | 5 | fveq2d | |- ( A e. RR -> ( Im ` ( exp ` ( _i x. A ) ) ) = ( Im ` ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) ) |
| 7 | 1re | |- 1 e. RR |
|
| 8 | resqcl | |- ( A e. RR -> ( A ^ 2 ) e. RR ) |
|
| 9 | 8 | rehalfcld | |- ( A e. RR -> ( ( A ^ 2 ) / 2 ) e. RR ) |
| 10 | resubcl | |- ( ( 1 e. RR /\ ( ( A ^ 2 ) / 2 ) e. RR ) -> ( 1 - ( ( A ^ 2 ) / 2 ) ) e. RR ) |
|
| 11 | 7 9 10 | sylancr | |- ( A e. RR -> ( 1 - ( ( A ^ 2 ) / 2 ) ) e. RR ) |
| 12 | 11 | recnd | |- ( A e. RR -> ( 1 - ( ( A ^ 2 ) / 2 ) ) e. CC ) |
| 13 | ax-icn | |- _i e. CC |
|
| 14 | 3nn0 | |- 3 e. NN0 |
|
| 15 | reexpcl | |- ( ( A e. RR /\ 3 e. NN0 ) -> ( A ^ 3 ) e. RR ) |
|
| 16 | 14 15 | mpan2 | |- ( A e. RR -> ( A ^ 3 ) e. RR ) |
| 17 | 6re | |- 6 e. RR |
|
| 18 | 6pos | |- 0 < 6 |
|
| 19 | 17 18 | gt0ne0ii | |- 6 =/= 0 |
| 20 | redivcl | |- ( ( ( A ^ 3 ) e. RR /\ 6 e. RR /\ 6 =/= 0 ) -> ( ( A ^ 3 ) / 6 ) e. RR ) |
|
| 21 | 17 19 20 | mp3an23 | |- ( ( A ^ 3 ) e. RR -> ( ( A ^ 3 ) / 6 ) e. RR ) |
| 22 | 16 21 | syl | |- ( A e. RR -> ( ( A ^ 3 ) / 6 ) e. RR ) |
| 23 | resubcl | |- ( ( A e. RR /\ ( ( A ^ 3 ) / 6 ) e. RR ) -> ( A - ( ( A ^ 3 ) / 6 ) ) e. RR ) |
|
| 24 | 22 23 | mpdan | |- ( A e. RR -> ( A - ( ( A ^ 3 ) / 6 ) ) e. RR ) |
| 25 | 24 | recnd | |- ( A e. RR -> ( A - ( ( A ^ 3 ) / 6 ) ) e. CC ) |
| 26 | mulcl | |- ( ( _i e. CC /\ ( A - ( ( A ^ 3 ) / 6 ) ) e. CC ) -> ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) e. CC ) |
|
| 27 | 13 25 26 | sylancr | |- ( A e. RR -> ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) e. CC ) |
| 28 | 12 27 | addcld | |- ( A e. RR -> ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) e. CC ) |
| 29 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 30 | 13 3 29 | sylancr | |- ( A e. RR -> ( _i x. A ) e. CC ) |
| 31 | 4nn0 | |- 4 e. NN0 |
|
| 32 | 1 | eftlcl | |- ( ( ( _i x. A ) e. CC /\ 4 e. NN0 ) -> sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) e. CC ) |
| 33 | 30 31 32 | sylancl | |- ( A e. RR -> sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) e. CC ) |
| 34 | 28 33 | imaddd | |- ( A e. RR -> ( Im ` ( ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) + sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) = ( ( Im ` ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) ) + ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) ) |
| 35 | 11 24 | crimd | |- ( A e. RR -> ( Im ` ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) ) = ( A - ( ( A ^ 3 ) / 6 ) ) ) |
| 36 | 35 | oveq1d | |- ( A e. RR -> ( ( Im ` ( ( 1 - ( ( A ^ 2 ) / 2 ) ) + ( _i x. ( A - ( ( A ^ 3 ) / 6 ) ) ) ) ) + ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) = ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) ) |
| 37 | 6 34 36 | 3eqtrd | |- ( A e. RR -> ( Im ` ( exp ` ( _i x. A ) ) ) = ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) ) |
| 38 | 2 37 | eqtrd | |- ( A e. RR -> ( sin ` A ) = ( ( A - ( ( A ^ 3 ) / 6 ) ) + ( Im ` sum_ k e. ( ZZ>= ` 4 ) ( F ` k ) ) ) ) |