This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for reconn . (Contributed by Jeff Hankins, 17-Aug-2009) (Proof shortened by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reconnlem2.1 | |- ( ph -> A C_ RR ) |
|
| reconnlem2.2 | |- ( ph -> U e. ( topGen ` ran (,) ) ) |
||
| reconnlem2.3 | |- ( ph -> V e. ( topGen ` ran (,) ) ) |
||
| reconnlem2.4 | |- ( ph -> A. x e. A A. y e. A ( x [,] y ) C_ A ) |
||
| reconnlem2.5 | |- ( ph -> B e. ( U i^i A ) ) |
||
| reconnlem2.6 | |- ( ph -> C e. ( V i^i A ) ) |
||
| reconnlem2.7 | |- ( ph -> ( U i^i V ) C_ ( RR \ A ) ) |
||
| reconnlem2.8 | |- ( ph -> B <_ C ) |
||
| reconnlem2.9 | |- S = sup ( ( U i^i ( B [,] C ) ) , RR , < ) |
||
| Assertion | reconnlem2 | |- ( ph -> -. A C_ ( U u. V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reconnlem2.1 | |- ( ph -> A C_ RR ) |
|
| 2 | reconnlem2.2 | |- ( ph -> U e. ( topGen ` ran (,) ) ) |
|
| 3 | reconnlem2.3 | |- ( ph -> V e. ( topGen ` ran (,) ) ) |
|
| 4 | reconnlem2.4 | |- ( ph -> A. x e. A A. y e. A ( x [,] y ) C_ A ) |
|
| 5 | reconnlem2.5 | |- ( ph -> B e. ( U i^i A ) ) |
|
| 6 | reconnlem2.6 | |- ( ph -> C e. ( V i^i A ) ) |
|
| 7 | reconnlem2.7 | |- ( ph -> ( U i^i V ) C_ ( RR \ A ) ) |
|
| 8 | reconnlem2.8 | |- ( ph -> B <_ C ) |
|
| 9 | reconnlem2.9 | |- S = sup ( ( U i^i ( B [,] C ) ) , RR , < ) |
|
| 10 | inss2 | |- ( U i^i ( B [,] C ) ) C_ ( B [,] C ) |
|
| 11 | 5 | elin2d | |- ( ph -> B e. A ) |
| 12 | 6 | elin2d | |- ( ph -> C e. A ) |
| 13 | oveq1 | |- ( x = B -> ( x [,] y ) = ( B [,] y ) ) |
|
| 14 | 13 | sseq1d | |- ( x = B -> ( ( x [,] y ) C_ A <-> ( B [,] y ) C_ A ) ) |
| 15 | oveq2 | |- ( y = C -> ( B [,] y ) = ( B [,] C ) ) |
|
| 16 | 15 | sseq1d | |- ( y = C -> ( ( B [,] y ) C_ A <-> ( B [,] C ) C_ A ) ) |
| 17 | 14 16 | rspc2va | |- ( ( ( B e. A /\ C e. A ) /\ A. x e. A A. y e. A ( x [,] y ) C_ A ) -> ( B [,] C ) C_ A ) |
| 18 | 11 12 4 17 | syl21anc | |- ( ph -> ( B [,] C ) C_ A ) |
| 19 | 18 1 | sstrd | |- ( ph -> ( B [,] C ) C_ RR ) |
| 20 | 10 19 | sstrid | |- ( ph -> ( U i^i ( B [,] C ) ) C_ RR ) |
| 21 | 5 | elin1d | |- ( ph -> B e. U ) |
| 22 | 1 11 | sseldd | |- ( ph -> B e. RR ) |
| 23 | 22 | rexrd | |- ( ph -> B e. RR* ) |
| 24 | 1 12 | sseldd | |- ( ph -> C e. RR ) |
| 25 | 24 | rexrd | |- ( ph -> C e. RR* ) |
| 26 | lbicc2 | |- ( ( B e. RR* /\ C e. RR* /\ B <_ C ) -> B e. ( B [,] C ) ) |
|
| 27 | 23 25 8 26 | syl3anc | |- ( ph -> B e. ( B [,] C ) ) |
| 28 | 21 27 | elind | |- ( ph -> B e. ( U i^i ( B [,] C ) ) ) |
| 29 | 28 | ne0d | |- ( ph -> ( U i^i ( B [,] C ) ) =/= (/) ) |
| 30 | elinel2 | |- ( w e. ( U i^i ( B [,] C ) ) -> w e. ( B [,] C ) ) |
|
| 31 | elicc2 | |- ( ( B e. RR /\ C e. RR ) -> ( w e. ( B [,] C ) <-> ( w e. RR /\ B <_ w /\ w <_ C ) ) ) |
|
| 32 | 22 24 31 | syl2anc | |- ( ph -> ( w e. ( B [,] C ) <-> ( w e. RR /\ B <_ w /\ w <_ C ) ) ) |
| 33 | simp3 | |- ( ( w e. RR /\ B <_ w /\ w <_ C ) -> w <_ C ) |
|
| 34 | 32 33 | biimtrdi | |- ( ph -> ( w e. ( B [,] C ) -> w <_ C ) ) |
| 35 | 30 34 | syl5 | |- ( ph -> ( w e. ( U i^i ( B [,] C ) ) -> w <_ C ) ) |
| 36 | 35 | ralrimiv | |- ( ph -> A. w e. ( U i^i ( B [,] C ) ) w <_ C ) |
| 37 | brralrspcev | |- ( ( C e. RR /\ A. w e. ( U i^i ( B [,] C ) ) w <_ C ) -> E. z e. RR A. w e. ( U i^i ( B [,] C ) ) w <_ z ) |
|
| 38 | 24 36 37 | syl2anc | |- ( ph -> E. z e. RR A. w e. ( U i^i ( B [,] C ) ) w <_ z ) |
| 39 | 20 29 38 | suprcld | |- ( ph -> sup ( ( U i^i ( B [,] C ) ) , RR , < ) e. RR ) |
| 40 | 9 39 | eqeltrid | |- ( ph -> S e. RR ) |
| 41 | rphalfcl | |- ( r e. RR+ -> ( r / 2 ) e. RR+ ) |
|
| 42 | ltaddrp | |- ( ( S e. RR /\ ( r / 2 ) e. RR+ ) -> S < ( S + ( r / 2 ) ) ) |
|
| 43 | 40 41 42 | syl2an | |- ( ( ph /\ r e. RR+ ) -> S < ( S + ( r / 2 ) ) ) |
| 44 | 40 | adantr | |- ( ( ph /\ r e. RR+ ) -> S e. RR ) |
| 45 | 41 | rpred | |- ( r e. RR+ -> ( r / 2 ) e. RR ) |
| 46 | readdcl | |- ( ( S e. RR /\ ( r / 2 ) e. RR ) -> ( S + ( r / 2 ) ) e. RR ) |
|
| 47 | 40 45 46 | syl2an | |- ( ( ph /\ r e. RR+ ) -> ( S + ( r / 2 ) ) e. RR ) |
| 48 | 44 47 | ltnled | |- ( ( ph /\ r e. RR+ ) -> ( S < ( S + ( r / 2 ) ) <-> -. ( S + ( r / 2 ) ) <_ S ) ) |
| 49 | 43 48 | mpbid | |- ( ( ph /\ r e. RR+ ) -> -. ( S + ( r / 2 ) ) <_ S ) |
| 50 | 20 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> ( U i^i ( B [,] C ) ) C_ RR ) |
| 51 | 29 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> ( U i^i ( B [,] C ) ) =/= (/) ) |
| 52 | 38 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> E. z e. RR A. w e. ( U i^i ( B [,] C ) ) w <_ z ) |
| 53 | simpr | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) |
|
| 54 | 53 | elin1d | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> ( S + ( r / 2 ) ) e. U ) |
| 55 | 47 | adantr | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> ( S + ( r / 2 ) ) e. RR ) |
| 56 | 22 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> B e. RR ) |
| 57 | 40 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> S e. RR ) |
| 58 | 20 29 38 28 | suprubd | |- ( ph -> B <_ sup ( ( U i^i ( B [,] C ) ) , RR , < ) ) |
| 59 | 58 9 | breqtrrdi | |- ( ph -> B <_ S ) |
| 60 | 59 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> B <_ S ) |
| 61 | 43 | adantr | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> S < ( S + ( r / 2 ) ) ) |
| 62 | 57 55 61 | ltled | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> S <_ ( S + ( r / 2 ) ) ) |
| 63 | 56 57 55 60 62 | letrd | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> B <_ ( S + ( r / 2 ) ) ) |
| 64 | 24 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> C e. RR ) |
| 65 | 53 | elin2d | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> ( S + ( r / 2 ) ) e. ( -oo (,) C ) ) |
| 66 | eliooord | |- ( ( S + ( r / 2 ) ) e. ( -oo (,) C ) -> ( -oo < ( S + ( r / 2 ) ) /\ ( S + ( r / 2 ) ) < C ) ) |
|
| 67 | 66 | simprd | |- ( ( S + ( r / 2 ) ) e. ( -oo (,) C ) -> ( S + ( r / 2 ) ) < C ) |
| 68 | 65 67 | syl | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> ( S + ( r / 2 ) ) < C ) |
| 69 | 55 64 68 | ltled | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> ( S + ( r / 2 ) ) <_ C ) |
| 70 | elicc2 | |- ( ( B e. RR /\ C e. RR ) -> ( ( S + ( r / 2 ) ) e. ( B [,] C ) <-> ( ( S + ( r / 2 ) ) e. RR /\ B <_ ( S + ( r / 2 ) ) /\ ( S + ( r / 2 ) ) <_ C ) ) ) |
|
| 71 | 56 64 70 | syl2anc | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> ( ( S + ( r / 2 ) ) e. ( B [,] C ) <-> ( ( S + ( r / 2 ) ) e. RR /\ B <_ ( S + ( r / 2 ) ) /\ ( S + ( r / 2 ) ) <_ C ) ) ) |
| 72 | 55 63 69 71 | mpbir3and | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> ( S + ( r / 2 ) ) e. ( B [,] C ) ) |
| 73 | 54 72 | elind | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> ( S + ( r / 2 ) ) e. ( U i^i ( B [,] C ) ) ) |
| 74 | 50 51 52 73 | suprubd | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> ( S + ( r / 2 ) ) <_ sup ( ( U i^i ( B [,] C ) ) , RR , < ) ) |
| 75 | 74 9 | breqtrrdi | |- ( ( ( ph /\ r e. RR+ ) /\ ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) -> ( S + ( r / 2 ) ) <_ S ) |
| 76 | 49 75 | mtand | |- ( ( ph /\ r e. RR+ ) -> -. ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) |
| 77 | eqid | |- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 78 | 77 | remetdval | |- ( ( ( S + ( r / 2 ) ) e. RR /\ S e. RR ) -> ( ( S + ( r / 2 ) ) ( ( abs o. - ) |` ( RR X. RR ) ) S ) = ( abs ` ( ( S + ( r / 2 ) ) - S ) ) ) |
| 79 | 47 44 78 | syl2anc | |- ( ( ph /\ r e. RR+ ) -> ( ( S + ( r / 2 ) ) ( ( abs o. - ) |` ( RR X. RR ) ) S ) = ( abs ` ( ( S + ( r / 2 ) ) - S ) ) ) |
| 80 | 44 | recnd | |- ( ( ph /\ r e. RR+ ) -> S e. CC ) |
| 81 | 45 | adantl | |- ( ( ph /\ r e. RR+ ) -> ( r / 2 ) e. RR ) |
| 82 | 81 | recnd | |- ( ( ph /\ r e. RR+ ) -> ( r / 2 ) e. CC ) |
| 83 | 80 82 | pncan2d | |- ( ( ph /\ r e. RR+ ) -> ( ( S + ( r / 2 ) ) - S ) = ( r / 2 ) ) |
| 84 | 83 | fveq2d | |- ( ( ph /\ r e. RR+ ) -> ( abs ` ( ( S + ( r / 2 ) ) - S ) ) = ( abs ` ( r / 2 ) ) ) |
| 85 | 41 | adantl | |- ( ( ph /\ r e. RR+ ) -> ( r / 2 ) e. RR+ ) |
| 86 | rpre | |- ( ( r / 2 ) e. RR+ -> ( r / 2 ) e. RR ) |
|
| 87 | rpge0 | |- ( ( r / 2 ) e. RR+ -> 0 <_ ( r / 2 ) ) |
|
| 88 | 86 87 | absidd | |- ( ( r / 2 ) e. RR+ -> ( abs ` ( r / 2 ) ) = ( r / 2 ) ) |
| 89 | 85 88 | syl | |- ( ( ph /\ r e. RR+ ) -> ( abs ` ( r / 2 ) ) = ( r / 2 ) ) |
| 90 | 79 84 89 | 3eqtrd | |- ( ( ph /\ r e. RR+ ) -> ( ( S + ( r / 2 ) ) ( ( abs o. - ) |` ( RR X. RR ) ) S ) = ( r / 2 ) ) |
| 91 | rphalflt | |- ( r e. RR+ -> ( r / 2 ) < r ) |
|
| 92 | 91 | adantl | |- ( ( ph /\ r e. RR+ ) -> ( r / 2 ) < r ) |
| 93 | 90 92 | eqbrtrd | |- ( ( ph /\ r e. RR+ ) -> ( ( S + ( r / 2 ) ) ( ( abs o. - ) |` ( RR X. RR ) ) S ) < r ) |
| 94 | 77 | rexmet | |- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
| 95 | 94 | a1i | |- ( ( ph /\ r e. RR+ ) -> ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) ) |
| 96 | rpxr | |- ( r e. RR+ -> r e. RR* ) |
|
| 97 | 96 | adantl | |- ( ( ph /\ r e. RR+ ) -> r e. RR* ) |
| 98 | elbl3 | |- ( ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ r e. RR* ) /\ ( S e. RR /\ ( S + ( r / 2 ) ) e. RR ) ) -> ( ( S + ( r / 2 ) ) e. ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) <-> ( ( S + ( r / 2 ) ) ( ( abs o. - ) |` ( RR X. RR ) ) S ) < r ) ) |
|
| 99 | 95 97 44 47 98 | syl22anc | |- ( ( ph /\ r e. RR+ ) -> ( ( S + ( r / 2 ) ) e. ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) <-> ( ( S + ( r / 2 ) ) ( ( abs o. - ) |` ( RR X. RR ) ) S ) < r ) ) |
| 100 | 93 99 | mpbird | |- ( ( ph /\ r e. RR+ ) -> ( S + ( r / 2 ) ) e. ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) ) |
| 101 | ssel | |- ( ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ ( U i^i ( -oo (,) C ) ) -> ( ( S + ( r / 2 ) ) e. ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) -> ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) ) |
|
| 102 | 100 101 | syl5com | |- ( ( ph /\ r e. RR+ ) -> ( ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ ( U i^i ( -oo (,) C ) ) -> ( S + ( r / 2 ) ) e. ( U i^i ( -oo (,) C ) ) ) ) |
| 103 | 76 102 | mtod | |- ( ( ph /\ r e. RR+ ) -> -. ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ ( U i^i ( -oo (,) C ) ) ) |
| 104 | 103 | nrexdv | |- ( ph -> -. E. r e. RR+ ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ ( U i^i ( -oo (,) C ) ) ) |
| 105 | 40 | adantr | |- ( ( ph /\ S e. U ) -> S e. RR ) |
| 106 | 105 | mnfltd | |- ( ( ph /\ S e. U ) -> -oo < S ) |
| 107 | suprleub | |- ( ( ( ( U i^i ( B [,] C ) ) C_ RR /\ ( U i^i ( B [,] C ) ) =/= (/) /\ E. z e. RR A. w e. ( U i^i ( B [,] C ) ) w <_ z ) /\ C e. RR ) -> ( sup ( ( U i^i ( B [,] C ) ) , RR , < ) <_ C <-> A. w e. ( U i^i ( B [,] C ) ) w <_ C ) ) |
|
| 108 | 20 29 38 24 107 | syl31anc | |- ( ph -> ( sup ( ( U i^i ( B [,] C ) ) , RR , < ) <_ C <-> A. w e. ( U i^i ( B [,] C ) ) w <_ C ) ) |
| 109 | 36 108 | mpbird | |- ( ph -> sup ( ( U i^i ( B [,] C ) ) , RR , < ) <_ C ) |
| 110 | 9 109 | eqbrtrid | |- ( ph -> S <_ C ) |
| 111 | 40 24 | leloed | |- ( ph -> ( S <_ C <-> ( S < C \/ S = C ) ) ) |
| 112 | 110 111 | mpbid | |- ( ph -> ( S < C \/ S = C ) ) |
| 113 | 112 | ord | |- ( ph -> ( -. S < C -> S = C ) ) |
| 114 | elndif | |- ( C e. A -> -. C e. ( RR \ A ) ) |
|
| 115 | 12 114 | syl | |- ( ph -> -. C e. ( RR \ A ) ) |
| 116 | 6 | elin1d | |- ( ph -> C e. V ) |
| 117 | elin | |- ( C e. ( U i^i V ) <-> ( C e. U /\ C e. V ) ) |
|
| 118 | 7 | sseld | |- ( ph -> ( C e. ( U i^i V ) -> C e. ( RR \ A ) ) ) |
| 119 | 117 118 | biimtrrid | |- ( ph -> ( ( C e. U /\ C e. V ) -> C e. ( RR \ A ) ) ) |
| 120 | 116 119 | mpan2d | |- ( ph -> ( C e. U -> C e. ( RR \ A ) ) ) |
| 121 | 115 120 | mtod | |- ( ph -> -. C e. U ) |
| 122 | eleq1 | |- ( S = C -> ( S e. U <-> C e. U ) ) |
|
| 123 | 122 | notbid | |- ( S = C -> ( -. S e. U <-> -. C e. U ) ) |
| 124 | 121 123 | syl5ibrcom | |- ( ph -> ( S = C -> -. S e. U ) ) |
| 125 | 113 124 | syld | |- ( ph -> ( -. S < C -> -. S e. U ) ) |
| 126 | 125 | con4d | |- ( ph -> ( S e. U -> S < C ) ) |
| 127 | 126 | imp | |- ( ( ph /\ S e. U ) -> S < C ) |
| 128 | mnfxr | |- -oo e. RR* |
|
| 129 | elioo2 | |- ( ( -oo e. RR* /\ C e. RR* ) -> ( S e. ( -oo (,) C ) <-> ( S e. RR /\ -oo < S /\ S < C ) ) ) |
|
| 130 | 128 25 129 | sylancr | |- ( ph -> ( S e. ( -oo (,) C ) <-> ( S e. RR /\ -oo < S /\ S < C ) ) ) |
| 131 | 130 | adantr | |- ( ( ph /\ S e. U ) -> ( S e. ( -oo (,) C ) <-> ( S e. RR /\ -oo < S /\ S < C ) ) ) |
| 132 | 105 106 127 131 | mpbir3and | |- ( ( ph /\ S e. U ) -> S e. ( -oo (,) C ) ) |
| 133 | 132 | ex | |- ( ph -> ( S e. U -> S e. ( -oo (,) C ) ) ) |
| 134 | 133 | ancld | |- ( ph -> ( S e. U -> ( S e. U /\ S e. ( -oo (,) C ) ) ) ) |
| 135 | elin | |- ( S e. ( U i^i ( -oo (,) C ) ) <-> ( S e. U /\ S e. ( -oo (,) C ) ) ) |
|
| 136 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 137 | iooretop | |- ( -oo (,) C ) e. ( topGen ` ran (,) ) |
|
| 138 | inopn | |- ( ( ( topGen ` ran (,) ) e. Top /\ U e. ( topGen ` ran (,) ) /\ ( -oo (,) C ) e. ( topGen ` ran (,) ) ) -> ( U i^i ( -oo (,) C ) ) e. ( topGen ` ran (,) ) ) |
|
| 139 | 136 137 138 | mp3an13 | |- ( U e. ( topGen ` ran (,) ) -> ( U i^i ( -oo (,) C ) ) e. ( topGen ` ran (,) ) ) |
| 140 | eqid | |- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
|
| 141 | 77 140 | tgioo | |- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 142 | 141 | mopni2 | |- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( U i^i ( -oo (,) C ) ) e. ( topGen ` ran (,) ) /\ S e. ( U i^i ( -oo (,) C ) ) ) -> E. r e. RR+ ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ ( U i^i ( -oo (,) C ) ) ) |
| 143 | 94 142 | mp3an1 | |- ( ( ( U i^i ( -oo (,) C ) ) e. ( topGen ` ran (,) ) /\ S e. ( U i^i ( -oo (,) C ) ) ) -> E. r e. RR+ ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ ( U i^i ( -oo (,) C ) ) ) |
| 144 | 143 | ex | |- ( ( U i^i ( -oo (,) C ) ) e. ( topGen ` ran (,) ) -> ( S e. ( U i^i ( -oo (,) C ) ) -> E. r e. RR+ ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ ( U i^i ( -oo (,) C ) ) ) ) |
| 145 | 2 139 144 | 3syl | |- ( ph -> ( S e. ( U i^i ( -oo (,) C ) ) -> E. r e. RR+ ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ ( U i^i ( -oo (,) C ) ) ) ) |
| 146 | 135 145 | biimtrrid | |- ( ph -> ( ( S e. U /\ S e. ( -oo (,) C ) ) -> E. r e. RR+ ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ ( U i^i ( -oo (,) C ) ) ) ) |
| 147 | 134 146 | syld | |- ( ph -> ( S e. U -> E. r e. RR+ ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ ( U i^i ( -oo (,) C ) ) ) ) |
| 148 | 104 147 | mtod | |- ( ph -> -. S e. U ) |
| 149 | ltsubrp | |- ( ( S e. RR /\ r e. RR+ ) -> ( S - r ) < S ) |
|
| 150 | 40 149 | sylan | |- ( ( ph /\ r e. RR+ ) -> ( S - r ) < S ) |
| 151 | rpre | |- ( r e. RR+ -> r e. RR ) |
|
| 152 | resubcl | |- ( ( S e. RR /\ r e. RR ) -> ( S - r ) e. RR ) |
|
| 153 | 40 151 152 | syl2an | |- ( ( ph /\ r e. RR+ ) -> ( S - r ) e. RR ) |
| 154 | 153 44 | ltnled | |- ( ( ph /\ r e. RR+ ) -> ( ( S - r ) < S <-> -. S <_ ( S - r ) ) ) |
| 155 | 150 154 | mpbid | |- ( ( ph /\ r e. RR+ ) -> -. S <_ ( S - r ) ) |
| 156 | 77 | bl2ioo | |- ( ( S e. RR /\ r e. RR ) -> ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( S - r ) (,) ( S + r ) ) ) |
| 157 | 40 151 156 | syl2an | |- ( ( ph /\ r e. RR+ ) -> ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( S - r ) (,) ( S + r ) ) ) |
| 158 | 157 | sseq1d | |- ( ( ph /\ r e. RR+ ) -> ( ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ V <-> ( ( S - r ) (,) ( S + r ) ) C_ V ) ) |
| 159 | 20 | ad3antrrr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ w e. ( U i^i ( B [,] C ) ) ) -> ( U i^i ( B [,] C ) ) C_ RR ) |
| 160 | simpr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ w e. ( U i^i ( B [,] C ) ) ) -> w e. ( U i^i ( B [,] C ) ) ) |
|
| 161 | 159 160 | sseldd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ w e. ( U i^i ( B [,] C ) ) ) -> w e. RR ) |
| 162 | 153 | ad2antrr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ w e. ( U i^i ( B [,] C ) ) ) -> ( S - r ) e. RR ) |
| 163 | 18 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) -> ( B [,] C ) C_ A ) |
| 164 | 10 163 | sstrid | |- ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) -> ( U i^i ( B [,] C ) ) C_ A ) |
| 165 | 164 | sselda | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ w e. ( U i^i ( B [,] C ) ) ) -> w e. A ) |
| 166 | elndif | |- ( w e. A -> -. w e. ( RR \ A ) ) |
|
| 167 | 165 166 | syl | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ w e. ( U i^i ( B [,] C ) ) ) -> -. w e. ( RR \ A ) ) |
| 168 | 7 | ad3antrrr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> ( U i^i V ) C_ ( RR \ A ) ) |
| 169 | simprl | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> w e. ( U i^i ( B [,] C ) ) ) |
|
| 170 | 169 | elin1d | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> w e. U ) |
| 171 | simplr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> ( ( S - r ) (,) ( S + r ) ) C_ V ) |
|
| 172 | 161 | adantrr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> w e. RR ) |
| 173 | simprr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> ( S - r ) < w ) |
|
| 174 | 44 | ad2antrr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> S e. RR ) |
| 175 | simpllr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> r e. RR+ ) |
|
| 176 | 175 | rpred | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> r e. RR ) |
| 177 | 174 176 | readdcld | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> ( S + r ) e. RR ) |
| 178 | 159 | adantrr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> ( U i^i ( B [,] C ) ) C_ RR ) |
| 179 | 29 | ad3antrrr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> ( U i^i ( B [,] C ) ) =/= (/) ) |
| 180 | 38 | ad3antrrr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> E. z e. RR A. w e. ( U i^i ( B [,] C ) ) w <_ z ) |
| 181 | 178 179 180 169 | suprubd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> w <_ sup ( ( U i^i ( B [,] C ) ) , RR , < ) ) |
| 182 | 181 9 | breqtrrdi | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> w <_ S ) |
| 183 | 174 175 | ltaddrpd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> S < ( S + r ) ) |
| 184 | 172 174 177 182 183 | lelttrd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> w < ( S + r ) ) |
| 185 | 153 | ad2antrr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> ( S - r ) e. RR ) |
| 186 | rexr | |- ( ( S - r ) e. RR -> ( S - r ) e. RR* ) |
|
| 187 | rexr | |- ( ( S + r ) e. RR -> ( S + r ) e. RR* ) |
|
| 188 | elioo2 | |- ( ( ( S - r ) e. RR* /\ ( S + r ) e. RR* ) -> ( w e. ( ( S - r ) (,) ( S + r ) ) <-> ( w e. RR /\ ( S - r ) < w /\ w < ( S + r ) ) ) ) |
|
| 189 | 186 187 188 | syl2an | |- ( ( ( S - r ) e. RR /\ ( S + r ) e. RR ) -> ( w e. ( ( S - r ) (,) ( S + r ) ) <-> ( w e. RR /\ ( S - r ) < w /\ w < ( S + r ) ) ) ) |
| 190 | 185 177 189 | syl2anc | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> ( w e. ( ( S - r ) (,) ( S + r ) ) <-> ( w e. RR /\ ( S - r ) < w /\ w < ( S + r ) ) ) ) |
| 191 | 172 173 184 190 | mpbir3and | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> w e. ( ( S - r ) (,) ( S + r ) ) ) |
| 192 | 171 191 | sseldd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> w e. V ) |
| 193 | 170 192 | elind | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> w e. ( U i^i V ) ) |
| 194 | 168 193 | sseldd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ ( w e. ( U i^i ( B [,] C ) ) /\ ( S - r ) < w ) ) -> w e. ( RR \ A ) ) |
| 195 | 194 | expr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ w e. ( U i^i ( B [,] C ) ) ) -> ( ( S - r ) < w -> w e. ( RR \ A ) ) ) |
| 196 | 167 195 | mtod | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ w e. ( U i^i ( B [,] C ) ) ) -> -. ( S - r ) < w ) |
| 197 | 161 162 196 | nltled | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) /\ w e. ( U i^i ( B [,] C ) ) ) -> w <_ ( S - r ) ) |
| 198 | 197 | ralrimiva | |- ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) -> A. w e. ( U i^i ( B [,] C ) ) w <_ ( S - r ) ) |
| 199 | 20 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) -> ( U i^i ( B [,] C ) ) C_ RR ) |
| 200 | 29 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) -> ( U i^i ( B [,] C ) ) =/= (/) ) |
| 201 | 38 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) -> E. z e. RR A. w e. ( U i^i ( B [,] C ) ) w <_ z ) |
| 202 | 153 | adantr | |- ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) -> ( S - r ) e. RR ) |
| 203 | suprleub | |- ( ( ( ( U i^i ( B [,] C ) ) C_ RR /\ ( U i^i ( B [,] C ) ) =/= (/) /\ E. z e. RR A. w e. ( U i^i ( B [,] C ) ) w <_ z ) /\ ( S - r ) e. RR ) -> ( sup ( ( U i^i ( B [,] C ) ) , RR , < ) <_ ( S - r ) <-> A. w e. ( U i^i ( B [,] C ) ) w <_ ( S - r ) ) ) |
|
| 204 | 199 200 201 202 203 | syl31anc | |- ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) -> ( sup ( ( U i^i ( B [,] C ) ) , RR , < ) <_ ( S - r ) <-> A. w e. ( U i^i ( B [,] C ) ) w <_ ( S - r ) ) ) |
| 205 | 198 204 | mpbird | |- ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) -> sup ( ( U i^i ( B [,] C ) ) , RR , < ) <_ ( S - r ) ) |
| 206 | 9 205 | eqbrtrid | |- ( ( ( ph /\ r e. RR+ ) /\ ( ( S - r ) (,) ( S + r ) ) C_ V ) -> S <_ ( S - r ) ) |
| 207 | 206 | ex | |- ( ( ph /\ r e. RR+ ) -> ( ( ( S - r ) (,) ( S + r ) ) C_ V -> S <_ ( S - r ) ) ) |
| 208 | 158 207 | sylbid | |- ( ( ph /\ r e. RR+ ) -> ( ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ V -> S <_ ( S - r ) ) ) |
| 209 | 155 208 | mtod | |- ( ( ph /\ r e. RR+ ) -> -. ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ V ) |
| 210 | 209 | nrexdv | |- ( ph -> -. E. r e. RR+ ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ V ) |
| 211 | 141 | mopni2 | |- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ V e. ( topGen ` ran (,) ) /\ S e. V ) -> E. r e. RR+ ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ V ) |
| 212 | 94 211 | mp3an1 | |- ( ( V e. ( topGen ` ran (,) ) /\ S e. V ) -> E. r e. RR+ ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ V ) |
| 213 | 212 | ex | |- ( V e. ( topGen ` ran (,) ) -> ( S e. V -> E. r e. RR+ ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ V ) ) |
| 214 | 3 213 | syl | |- ( ph -> ( S e. V -> E. r e. RR+ ( S ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ V ) ) |
| 215 | 210 214 | mtod | |- ( ph -> -. S e. V ) |
| 216 | ioran | |- ( -. ( S e. U \/ S e. V ) <-> ( -. S e. U /\ -. S e. V ) ) |
|
| 217 | 148 215 216 | sylanbrc | |- ( ph -> -. ( S e. U \/ S e. V ) ) |
| 218 | elun | |- ( S e. ( U u. V ) <-> ( S e. U \/ S e. V ) ) |
|
| 219 | 217 218 | sylnibr | |- ( ph -> -. S e. ( U u. V ) ) |
| 220 | elicc2 | |- ( ( B e. RR /\ C e. RR ) -> ( S e. ( B [,] C ) <-> ( S e. RR /\ B <_ S /\ S <_ C ) ) ) |
|
| 221 | 22 24 220 | syl2anc | |- ( ph -> ( S e. ( B [,] C ) <-> ( S e. RR /\ B <_ S /\ S <_ C ) ) ) |
| 222 | 40 59 110 221 | mpbir3and | |- ( ph -> S e. ( B [,] C ) ) |
| 223 | 18 222 | sseldd | |- ( ph -> S e. A ) |
| 224 | ssel | |- ( A C_ ( U u. V ) -> ( S e. A -> S e. ( U u. V ) ) ) |
|
| 225 | 223 224 | syl5com | |- ( ph -> ( A C_ ( U u. V ) -> S e. ( U u. V ) ) ) |
| 226 | 219 225 | mtod | |- ( ph -> -. A C_ ( U u. V ) ) |