This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inopn | |- ( ( J e. Top /\ A e. J /\ B e. J ) -> ( A i^i B ) e. J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopg | |- ( J e. Top -> ( J e. Top <-> ( A. x ( x C_ J -> U. x e. J ) /\ A. x e. J A. y e. J ( x i^i y ) e. J ) ) ) |
|
| 2 | 1 | ibi | |- ( J e. Top -> ( A. x ( x C_ J -> U. x e. J ) /\ A. x e. J A. y e. J ( x i^i y ) e. J ) ) |
| 3 | 2 | simprd | |- ( J e. Top -> A. x e. J A. y e. J ( x i^i y ) e. J ) |
| 4 | ineq1 | |- ( x = A -> ( x i^i y ) = ( A i^i y ) ) |
|
| 5 | 4 | eleq1d | |- ( x = A -> ( ( x i^i y ) e. J <-> ( A i^i y ) e. J ) ) |
| 6 | ineq2 | |- ( y = B -> ( A i^i y ) = ( A i^i B ) ) |
|
| 7 | 6 | eleq1d | |- ( y = B -> ( ( A i^i y ) e. J <-> ( A i^i B ) e. J ) ) |
| 8 | 5 7 | rspc2v | |- ( ( A e. J /\ B e. J ) -> ( A. x e. J A. y e. J ( x i^i y ) e. J -> ( A i^i B ) e. J ) ) |
| 9 | 3 8 | syl5com | |- ( J e. Top -> ( ( A e. J /\ B e. J ) -> ( A i^i B ) e. J ) ) |
| 10 | 9 | 3impib | |- ( ( J e. Top /\ A e. J /\ B e. J ) -> ( A i^i B ) e. J ) |