This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of reciprocal for positive fractions. Proposition 9-2.6(iv) of Gleason p. 120. (Contributed by NM, 9-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltrnq | |- ( A( *Q ` B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq | |- |
|
| 2 | 1 | brel | |- ( A( A e. Q. /\ B e. Q. ) ) |
| 3 | 1 | brel | |- ( ( *Q ` B )( ( *Q ` B ) e. Q. /\ ( *Q ` A ) e. Q. ) ) |
| 4 | dmrecnq | |- dom *Q = Q. |
|
| 5 | 0nnq | |- -. (/) e. Q. |
|
| 6 | 4 5 | ndmfvrcl | |- ( ( *Q ` B ) e. Q. -> B e. Q. ) |
| 7 | 4 5 | ndmfvrcl | |- ( ( *Q ` A ) e. Q. -> A e. Q. ) |
| 8 | 6 7 | anim12ci | |- ( ( ( *Q ` B ) e. Q. /\ ( *Q ` A ) e. Q. ) -> ( A e. Q. /\ B e. Q. ) ) |
| 9 | 3 8 | syl | |- ( ( *Q ` B )( A e. Q. /\ B e. Q. ) ) |
| 10 | breq1 | |- ( x = A -> ( xA |
|
| 11 | fveq2 | |- ( x = A -> ( *Q ` x ) = ( *Q ` A ) ) |
|
| 12 | 11 | breq2d | |- ( x = A -> ( ( *Q ` y )( *Q ` y ) |
| 13 | 10 12 | bibi12d | |- ( x = A -> ( ( x( *Q ` y )( A( *Q ` y ) |
| 14 | breq2 | |- ( y = B -> ( AA |
|
| 15 | fveq2 | |- ( y = B -> ( *Q ` y ) = ( *Q ` B ) ) |
|
| 16 | 15 | breq1d | |- ( y = B -> ( ( *Q ` y )( *Q ` B ) |
| 17 | 14 16 | bibi12d | |- ( y = B -> ( ( A( *Q ` y )( A( *Q ` B ) |
| 18 | recclnq | |- ( x e. Q. -> ( *Q ` x ) e. Q. ) |
|
| 19 | recclnq | |- ( y e. Q. -> ( *Q ` y ) e. Q. ) |
|
| 20 | mulclnq | |- ( ( ( *Q ` x ) e. Q. /\ ( *Q ` y ) e. Q. ) -> ( ( *Q ` x ) .Q ( *Q ` y ) ) e. Q. ) |
|
| 21 | 18 19 20 | syl2an | |- ( ( x e. Q. /\ y e. Q. ) -> ( ( *Q ` x ) .Q ( *Q ` y ) ) e. Q. ) |
| 22 | ltmnq | |- ( ( ( *Q ` x ) .Q ( *Q ` y ) ) e. Q. -> ( x( ( ( *Q ` x ) .Q ( *Q ` y ) ) .Q x ) |
|
| 23 | 21 22 | syl | |- ( ( x e. Q. /\ y e. Q. ) -> ( x( ( ( *Q ` x ) .Q ( *Q ` y ) ) .Q x ) |
| 24 | mulcomnq | |- ( ( ( *Q ` x ) .Q ( *Q ` y ) ) .Q x ) = ( x .Q ( ( *Q ` x ) .Q ( *Q ` y ) ) ) |
|
| 25 | mulassnq | |- ( ( x .Q ( *Q ` x ) ) .Q ( *Q ` y ) ) = ( x .Q ( ( *Q ` x ) .Q ( *Q ` y ) ) ) |
|
| 26 | mulcomnq | |- ( ( x .Q ( *Q ` x ) ) .Q ( *Q ` y ) ) = ( ( *Q ` y ) .Q ( x .Q ( *Q ` x ) ) ) |
|
| 27 | 24 25 26 | 3eqtr2i | |- ( ( ( *Q ` x ) .Q ( *Q ` y ) ) .Q x ) = ( ( *Q ` y ) .Q ( x .Q ( *Q ` x ) ) ) |
| 28 | recidnq | |- ( x e. Q. -> ( x .Q ( *Q ` x ) ) = 1Q ) |
|
| 29 | 28 | oveq2d | |- ( x e. Q. -> ( ( *Q ` y ) .Q ( x .Q ( *Q ` x ) ) ) = ( ( *Q ` y ) .Q 1Q ) ) |
| 30 | mulidnq | |- ( ( *Q ` y ) e. Q. -> ( ( *Q ` y ) .Q 1Q ) = ( *Q ` y ) ) |
|
| 31 | 19 30 | syl | |- ( y e. Q. -> ( ( *Q ` y ) .Q 1Q ) = ( *Q ` y ) ) |
| 32 | 29 31 | sylan9eq | |- ( ( x e. Q. /\ y e. Q. ) -> ( ( *Q ` y ) .Q ( x .Q ( *Q ` x ) ) ) = ( *Q ` y ) ) |
| 33 | 27 32 | eqtrid | |- ( ( x e. Q. /\ y e. Q. ) -> ( ( ( *Q ` x ) .Q ( *Q ` y ) ) .Q x ) = ( *Q ` y ) ) |
| 34 | mulassnq | |- ( ( ( *Q ` x ) .Q ( *Q ` y ) ) .Q y ) = ( ( *Q ` x ) .Q ( ( *Q ` y ) .Q y ) ) |
|
| 35 | mulcomnq | |- ( ( *Q ` y ) .Q y ) = ( y .Q ( *Q ` y ) ) |
|
| 36 | 35 | oveq2i | |- ( ( *Q ` x ) .Q ( ( *Q ` y ) .Q y ) ) = ( ( *Q ` x ) .Q ( y .Q ( *Q ` y ) ) ) |
| 37 | 34 36 | eqtri | |- ( ( ( *Q ` x ) .Q ( *Q ` y ) ) .Q y ) = ( ( *Q ` x ) .Q ( y .Q ( *Q ` y ) ) ) |
| 38 | recidnq | |- ( y e. Q. -> ( y .Q ( *Q ` y ) ) = 1Q ) |
|
| 39 | 38 | oveq2d | |- ( y e. Q. -> ( ( *Q ` x ) .Q ( y .Q ( *Q ` y ) ) ) = ( ( *Q ` x ) .Q 1Q ) ) |
| 40 | mulidnq | |- ( ( *Q ` x ) e. Q. -> ( ( *Q ` x ) .Q 1Q ) = ( *Q ` x ) ) |
|
| 41 | 18 40 | syl | |- ( x e. Q. -> ( ( *Q ` x ) .Q 1Q ) = ( *Q ` x ) ) |
| 42 | 39 41 | sylan9eqr | |- ( ( x e. Q. /\ y e. Q. ) -> ( ( *Q ` x ) .Q ( y .Q ( *Q ` y ) ) ) = ( *Q ` x ) ) |
| 43 | 37 42 | eqtrid | |- ( ( x e. Q. /\ y e. Q. ) -> ( ( ( *Q ` x ) .Q ( *Q ` y ) ) .Q y ) = ( *Q ` x ) ) |
| 44 | 33 43 | breq12d | |- ( ( x e. Q. /\ y e. Q. ) -> ( ( ( ( *Q ` x ) .Q ( *Q ` y ) ) .Q x )( *Q ` y ) |
| 45 | 23 44 | bitrd | |- ( ( x e. Q. /\ y e. Q. ) -> ( x( *Q ` y ) |
| 46 | 13 17 45 | vtocl2ga | |- ( ( A e. Q. /\ B e. Q. ) -> ( A( *Q ` B ) |
| 47 | 2 9 46 | pm5.21nii | |- ( A( *Q ` B ) |