This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive real has no largest member. Definition 9-3.1(iii) of Gleason p. 121. (Contributed by NM, 9-Mar-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prnmax | |- ( ( A e. P. /\ B e. A ) -> E. x e. A B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( y = B -> ( y e. A <-> B e. A ) ) |
|
| 2 | 1 | anbi2d | |- ( y = B -> ( ( A e. P. /\ y e. A ) <-> ( A e. P. /\ B e. A ) ) ) |
| 3 | breq1 | |- ( y = B -> ( yB |
|
| 4 | 3 | rexbidv | |- ( y = B -> ( E. x e. A yE. x e. A B |
| 5 | 2 4 | imbi12d | |- ( y = B -> ( ( ( A e. P. /\ y e. A ) -> E. x e. A y( ( A e. P. /\ B e. A ) -> E. x e. A B |
| 6 | elnpi | |- ( A e. P. <-> ( ( A e. _V /\ (/) C. A /\ A C. Q. ) /\ A. y e. A ( A. x ( xx e. A ) /\ E. x e. A y |
|
| 7 | 6 | simprbi | |- ( A e. P. -> A. y e. A ( A. x ( xx e. A ) /\ E. x e. A y |
| 8 | 7 | r19.21bi | |- ( ( A e. P. /\ y e. A ) -> ( A. x ( xx e. A ) /\ E. x e. A y |
| 9 | 8 | simprd | |- ( ( A e. P. /\ y e. A ) -> E. x e. A y |
| 10 | 5 9 | vtoclg | |- ( B e. A -> ( ( A e. P. /\ B e. A ) -> E. x e. A B |
| 11 | 10 | anabsi7 | |- ( ( A e. P. /\ B e. A ) -> E. x e. A B |