This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of positive fractions is commutative. (Contributed by NM, 31-Aug-1995) (Revised by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulcomnq | |- ( A .Q B ) = ( B .Q A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcompq | |- ( A .pQ B ) = ( B .pQ A ) |
|
| 2 | 1 | fveq2i | |- ( /Q ` ( A .pQ B ) ) = ( /Q ` ( B .pQ A ) ) |
| 3 | mulpqnq | |- ( ( A e. Q. /\ B e. Q. ) -> ( A .Q B ) = ( /Q ` ( A .pQ B ) ) ) |
|
| 4 | mulpqnq | |- ( ( B e. Q. /\ A e. Q. ) -> ( B .Q A ) = ( /Q ` ( B .pQ A ) ) ) |
|
| 5 | 4 | ancoms | |- ( ( A e. Q. /\ B e. Q. ) -> ( B .Q A ) = ( /Q ` ( B .pQ A ) ) ) |
| 6 | 2 3 5 | 3eqtr4a | |- ( ( A e. Q. /\ B e. Q. ) -> ( A .Q B ) = ( B .Q A ) ) |
| 7 | mulnqf | |- .Q : ( Q. X. Q. ) --> Q. |
|
| 8 | 7 | fdmi | |- dom .Q = ( Q. X. Q. ) |
| 9 | 8 | ndmovcom | |- ( -. ( A e. Q. /\ B e. Q. ) -> ( A .Q B ) = ( B .Q A ) ) |
| 10 | 6 9 | pm2.61i | |- ( A .Q B ) = ( B .Q A ) |