This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 13-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | genp.1 | |- F = ( w e. P. , v e. P. |-> { x | E. y e. w E. z e. v x = ( y G z ) } ) |
|
| genp.2 | |- ( ( y e. Q. /\ z e. Q. ) -> ( y G z ) e. Q. ) |
||
| Assertion | genpelv | |- ( ( A e. P. /\ B e. P. ) -> ( C e. ( A F B ) <-> E. g e. A E. h e. B C = ( g G h ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genp.1 | |- F = ( w e. P. , v e. P. |-> { x | E. y e. w E. z e. v x = ( y G z ) } ) |
|
| 2 | genp.2 | |- ( ( y e. Q. /\ z e. Q. ) -> ( y G z ) e. Q. ) |
|
| 3 | 1 2 | genpv | |- ( ( A e. P. /\ B e. P. ) -> ( A F B ) = { f | E. g e. A E. h e. B f = ( g G h ) } ) |
| 4 | 3 | eleq2d | |- ( ( A e. P. /\ B e. P. ) -> ( C e. ( A F B ) <-> C e. { f | E. g e. A E. h e. B f = ( g G h ) } ) ) |
| 5 | id | |- ( C = ( g G h ) -> C = ( g G h ) ) |
|
| 6 | ovex | |- ( g G h ) e. _V |
|
| 7 | 5 6 | eqeltrdi | |- ( C = ( g G h ) -> C e. _V ) |
| 8 | 7 | rexlimivw | |- ( E. h e. B C = ( g G h ) -> C e. _V ) |
| 9 | 8 | rexlimivw | |- ( E. g e. A E. h e. B C = ( g G h ) -> C e. _V ) |
| 10 | eqeq1 | |- ( f = C -> ( f = ( g G h ) <-> C = ( g G h ) ) ) |
|
| 11 | 10 | 2rexbidv | |- ( f = C -> ( E. g e. A E. h e. B f = ( g G h ) <-> E. g e. A E. h e. B C = ( g G h ) ) ) |
| 12 | 9 11 | elab3 | |- ( C e. { f | E. g e. A E. h e. B f = ( g G h ) } <-> E. g e. A E. h e. B C = ( g G h ) ) |
| 13 | 4 12 | bitrdi | |- ( ( A e. P. /\ B e. P. ) -> ( C e. ( A F B ) <-> E. g e. A E. h e. B C = ( g G h ) ) ) |