This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996) (Revised by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulidnq | |- ( A e. Q. -> ( A .Q 1Q ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nq | |- 1Q e. Q. |
|
| 2 | mulpqnq | |- ( ( A e. Q. /\ 1Q e. Q. ) -> ( A .Q 1Q ) = ( /Q ` ( A .pQ 1Q ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. Q. -> ( A .Q 1Q ) = ( /Q ` ( A .pQ 1Q ) ) ) |
| 4 | relxp | |- Rel ( N. X. N. ) |
|
| 5 | elpqn | |- ( A e. Q. -> A e. ( N. X. N. ) ) |
|
| 6 | 1st2nd | |- ( ( Rel ( N. X. N. ) /\ A e. ( N. X. N. ) ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
|
| 7 | 4 5 6 | sylancr | |- ( A e. Q. -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
| 8 | df-1nq | |- 1Q = <. 1o , 1o >. |
|
| 9 | 8 | a1i | |- ( A e. Q. -> 1Q = <. 1o , 1o >. ) |
| 10 | 7 9 | oveq12d | |- ( A e. Q. -> ( A .pQ 1Q ) = ( <. ( 1st ` A ) , ( 2nd ` A ) >. .pQ <. 1o , 1o >. ) ) |
| 11 | xp1st | |- ( A e. ( N. X. N. ) -> ( 1st ` A ) e. N. ) |
|
| 12 | 5 11 | syl | |- ( A e. Q. -> ( 1st ` A ) e. N. ) |
| 13 | xp2nd | |- ( A e. ( N. X. N. ) -> ( 2nd ` A ) e. N. ) |
|
| 14 | 5 13 | syl | |- ( A e. Q. -> ( 2nd ` A ) e. N. ) |
| 15 | 1pi | |- 1o e. N. |
|
| 16 | 15 | a1i | |- ( A e. Q. -> 1o e. N. ) |
| 17 | mulpipq | |- ( ( ( ( 1st ` A ) e. N. /\ ( 2nd ` A ) e. N. ) /\ ( 1o e. N. /\ 1o e. N. ) ) -> ( <. ( 1st ` A ) , ( 2nd ` A ) >. .pQ <. 1o , 1o >. ) = <. ( ( 1st ` A ) .N 1o ) , ( ( 2nd ` A ) .N 1o ) >. ) |
|
| 18 | 12 14 16 16 17 | syl22anc | |- ( A e. Q. -> ( <. ( 1st ` A ) , ( 2nd ` A ) >. .pQ <. 1o , 1o >. ) = <. ( ( 1st ` A ) .N 1o ) , ( ( 2nd ` A ) .N 1o ) >. ) |
| 19 | mulidpi | |- ( ( 1st ` A ) e. N. -> ( ( 1st ` A ) .N 1o ) = ( 1st ` A ) ) |
|
| 20 | 11 19 | syl | |- ( A e. ( N. X. N. ) -> ( ( 1st ` A ) .N 1o ) = ( 1st ` A ) ) |
| 21 | mulidpi | |- ( ( 2nd ` A ) e. N. -> ( ( 2nd ` A ) .N 1o ) = ( 2nd ` A ) ) |
|
| 22 | 13 21 | syl | |- ( A e. ( N. X. N. ) -> ( ( 2nd ` A ) .N 1o ) = ( 2nd ` A ) ) |
| 23 | 20 22 | opeq12d | |- ( A e. ( N. X. N. ) -> <. ( ( 1st ` A ) .N 1o ) , ( ( 2nd ` A ) .N 1o ) >. = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
| 24 | 5 23 | syl | |- ( A e. Q. -> <. ( ( 1st ` A ) .N 1o ) , ( ( 2nd ` A ) .N 1o ) >. = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
| 25 | 10 18 24 | 3eqtrd | |- ( A e. Q. -> ( A .pQ 1Q ) = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
| 26 | 25 7 | eqtr4d | |- ( A e. Q. -> ( A .pQ 1Q ) = A ) |
| 27 | 26 | fveq2d | |- ( A e. Q. -> ( /Q ` ( A .pQ 1Q ) ) = ( /Q ` A ) ) |
| 28 | nqerid | |- ( A e. Q. -> ( /Q ` A ) = A ) |
|
| 29 | 3 27 28 | 3eqtrd | |- ( A e. Q. -> ( A .Q 1Q ) = A ) |