This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Proposition 9-3.7(v) of Gleason p. 124. (Contributed by NM, 30-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | reclempr.1 | |- B = { x | E. y ( x |
|
| Assertion | reclem4pr | |- ( A e. P. -> ( A .P. B ) = 1P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reclempr.1 | |- B = { x | E. y ( x |
|
| 2 | 1 | reclem2pr | |- ( A e. P. -> B e. P. ) |
| 3 | df-mp | |- .P. = ( y e. P. , w e. P. |-> { u | E. f e. y E. g e. w u = ( f .Q g ) } ) |
|
| 4 | mulclnq | |- ( ( f e. Q. /\ g e. Q. ) -> ( f .Q g ) e. Q. ) |
|
| 5 | 3 4 | genpelv | |- ( ( A e. P. /\ B e. P. ) -> ( w e. ( A .P. B ) <-> E. z e. A E. x e. B w = ( z .Q x ) ) ) |
| 6 | 2 5 | mpdan | |- ( A e. P. -> ( w e. ( A .P. B ) <-> E. z e. A E. x e. B w = ( z .Q x ) ) ) |
| 7 | 1 | eqabri | |- ( x e. B <-> E. y ( x |
| 8 | ltrelnq | |- |
|
| 9 | 8 | brel | |- ( x( x e. Q. /\ y e. Q. ) ) |
| 10 | 9 | simprd | |- ( xy e. Q. ) |
| 11 | elprnq | |- ( ( A e. P. /\ z e. A ) -> z e. Q. ) |
|
| 12 | ltmnq | |- ( z e. Q. -> ( x( z .Q x ) |
|
| 13 | 11 12 | syl | |- ( ( A e. P. /\ z e. A ) -> ( x( z .Q x ) |
| 14 | 13 | biimpd | |- ( ( A e. P. /\ z e. A ) -> ( x( z .Q x ) |
| 15 | 14 | adantr | |- ( ( ( A e. P. /\ z e. A ) /\ y e. Q. ) -> ( x( z .Q x ) |
| 16 | recclnq | |- ( y e. Q. -> ( *Q ` y ) e. Q. ) |
|
| 17 | prub | |- ( ( ( A e. P. /\ z e. A ) /\ ( *Q ` y ) e. Q. ) -> ( -. ( *Q ` y ) e. A -> z |
|
| 18 | 16 17 | sylan2 | |- ( ( ( A e. P. /\ z e. A ) /\ y e. Q. ) -> ( -. ( *Q ` y ) e. A -> z |
| 19 | ltmnq | |- ( y e. Q. -> ( z( y .Q z ) |
|
| 20 | mulcomnq | |- ( y .Q z ) = ( z .Q y ) |
|
| 21 | 20 | a1i | |- ( y e. Q. -> ( y .Q z ) = ( z .Q y ) ) |
| 22 | recidnq | |- ( y e. Q. -> ( y .Q ( *Q ` y ) ) = 1Q ) |
|
| 23 | 21 22 | breq12d | |- ( y e. Q. -> ( ( y .Q z )( z .Q y ) |
| 24 | 19 23 | bitrd | |- ( y e. Q. -> ( z( z .Q y ) |
| 25 | 24 | adantl | |- ( ( ( A e. P. /\ z e. A ) /\ y e. Q. ) -> ( z( z .Q y ) |
| 26 | 18 25 | sylibd | |- ( ( ( A e. P. /\ z e. A ) /\ y e. Q. ) -> ( -. ( *Q ` y ) e. A -> ( z .Q y ) |
| 27 | 15 26 | anim12d | |- ( ( ( A e. P. /\ z e. A ) /\ y e. Q. ) -> ( ( x( ( z .Q x ) |
| 28 | ltsonq | |- |
|
| 29 | 28 8 | sotri | |- ( ( ( z .Q x )( z .Q x ) |
| 30 | 27 29 | syl6 | |- ( ( ( A e. P. /\ z e. A ) /\ y e. Q. ) -> ( ( x( z .Q x ) |
| 31 | 30 | exp4b | |- ( ( A e. P. /\ z e. A ) -> ( y e. Q. -> ( x( -. ( *Q ` y ) e. A -> ( z .Q x ) |
| 32 | 10 31 | syl5 | |- ( ( A e. P. /\ z e. A ) -> ( x( x( -. ( *Q ` y ) e. A -> ( z .Q x ) |
| 33 | 32 | pm2.43d | |- ( ( A e. P. /\ z e. A ) -> ( x( -. ( *Q ` y ) e. A -> ( z .Q x ) |
| 34 | 33 | impd | |- ( ( A e. P. /\ z e. A ) -> ( ( x( z .Q x ) |
| 35 | 34 | exlimdv | |- ( ( A e. P. /\ z e. A ) -> ( E. y ( x( z .Q x ) |
| 36 | 7 35 | biimtrid | |- ( ( A e. P. /\ z e. A ) -> ( x e. B -> ( z .Q x ) |
| 37 | breq1 | |- ( w = ( z .Q x ) -> ( w( z .Q x ) |
|
| 38 | 37 | biimprcd | |- ( ( z .Q x )( w = ( z .Q x ) -> w |
| 39 | 36 38 | syl6 | |- ( ( A e. P. /\ z e. A ) -> ( x e. B -> ( w = ( z .Q x ) -> w |
| 40 | 39 | expimpd | |- ( A e. P. -> ( ( z e. A /\ x e. B ) -> ( w = ( z .Q x ) -> w |
| 41 | 40 | rexlimdvv | |- ( A e. P. -> ( E. z e. A E. x e. B w = ( z .Q x ) -> w |
| 42 | 6 41 | sylbid | |- ( A e. P. -> ( w e. ( A .P. B ) -> w |
| 43 | df-1p | |- 1P = { w | w |
|
| 44 | 43 | eqabri | |- ( w e. 1P <-> w |
| 45 | 42 44 | imbitrrdi | |- ( A e. P. -> ( w e. ( A .P. B ) -> w e. 1P ) ) |
| 46 | 45 | ssrdv | |- ( A e. P. -> ( A .P. B ) C_ 1P ) |
| 47 | 1 | reclem3pr | |- ( A e. P. -> 1P C_ ( A .P. B ) ) |
| 48 | 46 47 | eqssd | |- ( A e. P. -> ( A .P. B ) = 1P ) |