This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of Gleason p. 120. (Contributed by NM, 6-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltmnq | |- ( C e. Q. -> ( A( C .Q A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulnqf | |- .Q : ( Q. X. Q. ) --> Q. |
|
| 2 | 1 | fdmi | |- dom .Q = ( Q. X. Q. ) |
| 3 | ltrelnq | |- |
|
| 4 | 0nnq | |- -. (/) e. Q. |
|
| 5 | elpqn | |- ( C e. Q. -> C e. ( N. X. N. ) ) |
|
| 6 | 5 | 3ad2ant3 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> C e. ( N. X. N. ) ) |
| 7 | xp1st | |- ( C e. ( N. X. N. ) -> ( 1st ` C ) e. N. ) |
|
| 8 | 6 7 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 1st ` C ) e. N. ) |
| 9 | xp2nd | |- ( C e. ( N. X. N. ) -> ( 2nd ` C ) e. N. ) |
|
| 10 | 6 9 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 2nd ` C ) e. N. ) |
| 11 | mulclpi | |- ( ( ( 1st ` C ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 1st ` C ) .N ( 2nd ` C ) ) e. N. ) |
|
| 12 | 8 10 11 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 1st ` C ) .N ( 2nd ` C ) ) e. N. ) |
| 13 | ltmpi | |- ( ( ( 1st ` C ) .N ( 2nd ` C ) ) e. N. -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) |
|
| 14 | 12 13 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) |
| 15 | fvex | |- ( 1st ` C ) e. _V |
|
| 16 | fvex | |- ( 2nd ` C ) e. _V |
|
| 17 | fvex | |- ( 1st ` A ) e. _V |
|
| 18 | mulcompi | |- ( x .N y ) = ( y .N x ) |
|
| 19 | mulasspi | |- ( ( x .N y ) .N z ) = ( x .N ( y .N z ) ) |
|
| 20 | fvex | |- ( 2nd ` B ) e. _V |
|
| 21 | 15 16 17 18 19 20 | caov4 | |- ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 1st ` A ) ) .N ( ( 2nd ` C ) .N ( 2nd ` B ) ) ) |
| 22 | fvex | |- ( 1st ` B ) e. _V |
|
| 23 | fvex | |- ( 2nd ` A ) e. _V |
|
| 24 | 15 16 22 18 19 23 | caov4 | |- ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 1st ` C ) .N ( 1st ` B ) ) .N ( ( 2nd ` C ) .N ( 2nd ` A ) ) ) |
| 25 | 21 24 | breq12i | |- ( ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) |
| 26 | 14 25 | bitrdi | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) |
| 27 | ordpipq | |- ( <. ( ( 1st ` C ) .N ( 1st ` A ) ) , ( ( 2nd ` C ) .N ( 2nd ` A ) ) >. |
|
| 28 | 26 27 | bitr4di | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) |
| 29 | elpqn | |- ( A e. Q. -> A e. ( N. X. N. ) ) |
|
| 30 | 29 | 3ad2ant1 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> A e. ( N. X. N. ) ) |
| 31 | mulpipq2 | |- ( ( C e. ( N. X. N. ) /\ A e. ( N. X. N. ) ) -> ( C .pQ A ) = <. ( ( 1st ` C ) .N ( 1st ` A ) ) , ( ( 2nd ` C ) .N ( 2nd ` A ) ) >. ) |
|
| 32 | 6 30 31 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( C .pQ A ) = <. ( ( 1st ` C ) .N ( 1st ` A ) ) , ( ( 2nd ` C ) .N ( 2nd ` A ) ) >. ) |
| 33 | elpqn | |- ( B e. Q. -> B e. ( N. X. N. ) ) |
|
| 34 | 33 | 3ad2ant2 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> B e. ( N. X. N. ) ) |
| 35 | mulpipq2 | |- ( ( C e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( C .pQ B ) = <. ( ( 1st ` C ) .N ( 1st ` B ) ) , ( ( 2nd ` C ) .N ( 2nd ` B ) ) >. ) |
|
| 36 | 6 34 35 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( C .pQ B ) = <. ( ( 1st ` C ) .N ( 1st ` B ) ) , ( ( 2nd ` C ) .N ( 2nd ` B ) ) >. ) |
| 37 | 32 36 | breq12d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( C .pQ A ) |
| 38 | 28 37 | bitr4d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) |
| 39 | ordpinq | |- ( ( A e. Q. /\ B e. Q. ) -> ( A( ( 1st ` A ) .N ( 2nd ` B ) ) |
|
| 40 | 39 | 3adant3 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A( ( 1st ` A ) .N ( 2nd ` B ) ) |
| 41 | mulpqnq | |- ( ( C e. Q. /\ A e. Q. ) -> ( C .Q A ) = ( /Q ` ( C .pQ A ) ) ) |
|
| 42 | 41 | ancoms | |- ( ( A e. Q. /\ C e. Q. ) -> ( C .Q A ) = ( /Q ` ( C .pQ A ) ) ) |
| 43 | 42 | 3adant2 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( C .Q A ) = ( /Q ` ( C .pQ A ) ) ) |
| 44 | mulpqnq | |- ( ( C e. Q. /\ B e. Q. ) -> ( C .Q B ) = ( /Q ` ( C .pQ B ) ) ) |
|
| 45 | 44 | ancoms | |- ( ( B e. Q. /\ C e. Q. ) -> ( C .Q B ) = ( /Q ` ( C .pQ B ) ) ) |
| 46 | 45 | 3adant1 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( C .Q B ) = ( /Q ` ( C .pQ B ) ) ) |
| 47 | 43 46 | breq12d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( C .Q A )( /Q ` ( C .pQ A ) ) |
| 48 | lterpq | |- ( ( C .pQ A ) |
|
| 49 | 47 48 | bitr4di | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( C .Q A )( C .pQ A ) |
| 50 | 38 40 49 | 3bitr4d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A( C .Q A ) |
| 51 | 2 3 4 50 | ndmovord | |- ( C e. Q. -> ( A( C .Q A ) |