This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of positive fractions is associative. (Contributed by NM, 1-Sep-1995) (Revised by Mario Carneiro, 8-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulassnq | |- ( ( A .Q B ) .Q C ) = ( A .Q ( B .Q C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulasspi | |- ( ( ( 1st ` A ) .N ( 1st ` B ) ) .N ( 1st ` C ) ) = ( ( 1st ` A ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) |
|
| 2 | mulasspi | |- ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) = ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
|
| 3 | 1 2 | opeq12i | |- <. ( ( ( 1st ` A ) .N ( 1st ` B ) ) .N ( 1st ` C ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) >. = <. ( ( 1st ` A ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) >. |
| 4 | elpqn | |- ( A e. Q. -> A e. ( N. X. N. ) ) |
|
| 5 | 4 | 3ad2ant1 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> A e. ( N. X. N. ) ) |
| 6 | elpqn | |- ( B e. Q. -> B e. ( N. X. N. ) ) |
|
| 7 | 6 | 3ad2ant2 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> B e. ( N. X. N. ) ) |
| 8 | mulpipq2 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A .pQ B ) = <. ( ( 1st ` A ) .N ( 1st ` B ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) |
|
| 9 | 5 7 8 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A .pQ B ) = <. ( ( 1st ` A ) .N ( 1st ` B ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) |
| 10 | relxp | |- Rel ( N. X. N. ) |
|
| 11 | elpqn | |- ( C e. Q. -> C e. ( N. X. N. ) ) |
|
| 12 | 11 | 3ad2ant3 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> C e. ( N. X. N. ) ) |
| 13 | 1st2nd | |- ( ( Rel ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> C = <. ( 1st ` C ) , ( 2nd ` C ) >. ) |
|
| 14 | 10 12 13 | sylancr | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> C = <. ( 1st ` C ) , ( 2nd ` C ) >. ) |
| 15 | 9 14 | oveq12d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A .pQ B ) .pQ C ) = ( <. ( ( 1st ` A ) .N ( 1st ` B ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. .pQ <. ( 1st ` C ) , ( 2nd ` C ) >. ) ) |
| 16 | xp1st | |- ( A e. ( N. X. N. ) -> ( 1st ` A ) e. N. ) |
|
| 17 | 5 16 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 1st ` A ) e. N. ) |
| 18 | xp1st | |- ( B e. ( N. X. N. ) -> ( 1st ` B ) e. N. ) |
|
| 19 | 7 18 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 1st ` B ) e. N. ) |
| 20 | mulclpi | |- ( ( ( 1st ` A ) e. N. /\ ( 1st ` B ) e. N. ) -> ( ( 1st ` A ) .N ( 1st ` B ) ) e. N. ) |
|
| 21 | 17 19 20 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 1st ` A ) .N ( 1st ` B ) ) e. N. ) |
| 22 | xp2nd | |- ( A e. ( N. X. N. ) -> ( 2nd ` A ) e. N. ) |
|
| 23 | 5 22 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 2nd ` A ) e. N. ) |
| 24 | xp2nd | |- ( B e. ( N. X. N. ) -> ( 2nd ` B ) e. N. ) |
|
| 25 | 7 24 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 2nd ` B ) e. N. ) |
| 26 | mulclpi | |- ( ( ( 2nd ` A ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 2nd ` A ) .N ( 2nd ` B ) ) e. N. ) |
|
| 27 | 23 25 26 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 2nd ` A ) .N ( 2nd ` B ) ) e. N. ) |
| 28 | xp1st | |- ( C e. ( N. X. N. ) -> ( 1st ` C ) e. N. ) |
|
| 29 | 12 28 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 1st ` C ) e. N. ) |
| 30 | xp2nd | |- ( C e. ( N. X. N. ) -> ( 2nd ` C ) e. N. ) |
|
| 31 | 12 30 | syl | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 2nd ` C ) e. N. ) |
| 32 | mulpipq | |- ( ( ( ( ( 1st ` A ) .N ( 1st ` B ) ) e. N. /\ ( ( 2nd ` A ) .N ( 2nd ` B ) ) e. N. ) /\ ( ( 1st ` C ) e. N. /\ ( 2nd ` C ) e. N. ) ) -> ( <. ( ( 1st ` A ) .N ( 1st ` B ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. .pQ <. ( 1st ` C ) , ( 2nd ` C ) >. ) = <. ( ( ( 1st ` A ) .N ( 1st ` B ) ) .N ( 1st ` C ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) >. ) |
|
| 33 | 21 27 29 31 32 | syl22anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( <. ( ( 1st ` A ) .N ( 1st ` B ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. .pQ <. ( 1st ` C ) , ( 2nd ` C ) >. ) = <. ( ( ( 1st ` A ) .N ( 1st ` B ) ) .N ( 1st ` C ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) >. ) |
| 34 | 15 33 | eqtrd | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A .pQ B ) .pQ C ) = <. ( ( ( 1st ` A ) .N ( 1st ` B ) ) .N ( 1st ` C ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) >. ) |
| 35 | 1st2nd | |- ( ( Rel ( N. X. N. ) /\ A e. ( N. X. N. ) ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
|
| 36 | 10 5 35 | sylancr | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
| 37 | mulpipq2 | |- ( ( B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( B .pQ C ) = <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) |
|
| 38 | 7 12 37 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( B .pQ C ) = <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) |
| 39 | 36 38 | oveq12d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A .pQ ( B .pQ C ) ) = ( <. ( 1st ` A ) , ( 2nd ` A ) >. .pQ <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) ) |
| 40 | mulclpi | |- ( ( ( 1st ` B ) e. N. /\ ( 1st ` C ) e. N. ) -> ( ( 1st ` B ) .N ( 1st ` C ) ) e. N. ) |
|
| 41 | 19 29 40 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 1st ` B ) .N ( 1st ` C ) ) e. N. ) |
| 42 | mulclpi | |- ( ( ( 2nd ` B ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) |
|
| 43 | 25 31 42 | syl2anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) |
| 44 | mulpipq | |- ( ( ( ( 1st ` A ) e. N. /\ ( 2nd ` A ) e. N. ) /\ ( ( ( 1st ` B ) .N ( 1st ` C ) ) e. N. /\ ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) ) -> ( <. ( 1st ` A ) , ( 2nd ` A ) >. .pQ <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) = <. ( ( 1st ` A ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) >. ) |
|
| 45 | 17 23 41 43 44 | syl22anc | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( <. ( 1st ` A ) , ( 2nd ` A ) >. .pQ <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) = <. ( ( 1st ` A ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) >. ) |
| 46 | 39 45 | eqtrd | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A .pQ ( B .pQ C ) ) = <. ( ( 1st ` A ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) >. ) |
| 47 | 3 34 46 | 3eqtr4a | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A .pQ B ) .pQ C ) = ( A .pQ ( B .pQ C ) ) ) |
| 48 | 47 | fveq2d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( /Q ` ( ( A .pQ B ) .pQ C ) ) = ( /Q ` ( A .pQ ( B .pQ C ) ) ) ) |
| 49 | mulerpq | |- ( ( /Q ` ( A .pQ B ) ) .Q ( /Q ` C ) ) = ( /Q ` ( ( A .pQ B ) .pQ C ) ) |
|
| 50 | mulerpq | |- ( ( /Q ` A ) .Q ( /Q ` ( B .pQ C ) ) ) = ( /Q ` ( A .pQ ( B .pQ C ) ) ) |
|
| 51 | 48 49 50 | 3eqtr4g | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( /Q ` ( A .pQ B ) ) .Q ( /Q ` C ) ) = ( ( /Q ` A ) .Q ( /Q ` ( B .pQ C ) ) ) ) |
| 52 | mulpqnq | |- ( ( A e. Q. /\ B e. Q. ) -> ( A .Q B ) = ( /Q ` ( A .pQ B ) ) ) |
|
| 53 | 52 | 3adant3 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A .Q B ) = ( /Q ` ( A .pQ B ) ) ) |
| 54 | nqerid | |- ( C e. Q. -> ( /Q ` C ) = C ) |
|
| 55 | 54 | eqcomd | |- ( C e. Q. -> C = ( /Q ` C ) ) |
| 56 | 55 | 3ad2ant3 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> C = ( /Q ` C ) ) |
| 57 | 53 56 | oveq12d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A .Q B ) .Q C ) = ( ( /Q ` ( A .pQ B ) ) .Q ( /Q ` C ) ) ) |
| 58 | nqerid | |- ( A e. Q. -> ( /Q ` A ) = A ) |
|
| 59 | 58 | eqcomd | |- ( A e. Q. -> A = ( /Q ` A ) ) |
| 60 | 59 | 3ad2ant1 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> A = ( /Q ` A ) ) |
| 61 | mulpqnq | |- ( ( B e. Q. /\ C e. Q. ) -> ( B .Q C ) = ( /Q ` ( B .pQ C ) ) ) |
|
| 62 | 61 | 3adant1 | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( B .Q C ) = ( /Q ` ( B .pQ C ) ) ) |
| 63 | 60 62 | oveq12d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A .Q ( B .Q C ) ) = ( ( /Q ` A ) .Q ( /Q ` ( B .pQ C ) ) ) ) |
| 64 | 51 57 63 | 3eqtr4d | |- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A .Q B ) .Q C ) = ( A .Q ( B .Q C ) ) ) |
| 65 | mulnqf | |- .Q : ( Q. X. Q. ) --> Q. |
|
| 66 | 65 | fdmi | |- dom .Q = ( Q. X. Q. ) |
| 67 | 0nnq | |- -. (/) e. Q. |
|
| 68 | 66 67 | ndmovass | |- ( -. ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A .Q B ) .Q C ) = ( A .Q ( B .Q C ) ) ) |
| 69 | 64 68 | pm2.61i | |- ( ( A .Q B ) .Q C ) = ( A .Q ( B .Q C ) ) |