This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by NM, 6-Mar-1996) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recmulnq | |- ( A e. Q. -> ( ( *Q ` A ) = B <-> ( A .Q B ) = 1Q ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | |- ( *Q ` A ) e. _V |
|
| 2 | 1 | a1i | |- ( A e. Q. -> ( *Q ` A ) e. _V ) |
| 3 | eleq1 | |- ( ( *Q ` A ) = B -> ( ( *Q ` A ) e. _V <-> B e. _V ) ) |
|
| 4 | 2 3 | syl5ibcom | |- ( A e. Q. -> ( ( *Q ` A ) = B -> B e. _V ) ) |
| 5 | id | |- ( ( A .Q B ) = 1Q -> ( A .Q B ) = 1Q ) |
|
| 6 | 1nq | |- 1Q e. Q. |
|
| 7 | 5 6 | eqeltrdi | |- ( ( A .Q B ) = 1Q -> ( A .Q B ) e. Q. ) |
| 8 | mulnqf | |- .Q : ( Q. X. Q. ) --> Q. |
|
| 9 | 8 | fdmi | |- dom .Q = ( Q. X. Q. ) |
| 10 | 0nnq | |- -. (/) e. Q. |
|
| 11 | 9 10 | ndmovrcl | |- ( ( A .Q B ) e. Q. -> ( A e. Q. /\ B e. Q. ) ) |
| 12 | 7 11 | syl | |- ( ( A .Q B ) = 1Q -> ( A e. Q. /\ B e. Q. ) ) |
| 13 | elex | |- ( B e. Q. -> B e. _V ) |
|
| 14 | 12 13 | simpl2im | |- ( ( A .Q B ) = 1Q -> B e. _V ) |
| 15 | 14 | a1i | |- ( A e. Q. -> ( ( A .Q B ) = 1Q -> B e. _V ) ) |
| 16 | oveq1 | |- ( x = A -> ( x .Q y ) = ( A .Q y ) ) |
|
| 17 | 16 | eqeq1d | |- ( x = A -> ( ( x .Q y ) = 1Q <-> ( A .Q y ) = 1Q ) ) |
| 18 | oveq2 | |- ( y = B -> ( A .Q y ) = ( A .Q B ) ) |
|
| 19 | 18 | eqeq1d | |- ( y = B -> ( ( A .Q y ) = 1Q <-> ( A .Q B ) = 1Q ) ) |
| 20 | nqerid | |- ( x e. Q. -> ( /Q ` x ) = x ) |
|
| 21 | relxp | |- Rel ( N. X. N. ) |
|
| 22 | elpqn | |- ( x e. Q. -> x e. ( N. X. N. ) ) |
|
| 23 | 1st2nd | |- ( ( Rel ( N. X. N. ) /\ x e. ( N. X. N. ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
|
| 24 | 21 22 23 | sylancr | |- ( x e. Q. -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 25 | 24 | fveq2d | |- ( x e. Q. -> ( /Q ` x ) = ( /Q ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 26 | 20 25 | eqtr3d | |- ( x e. Q. -> x = ( /Q ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 27 | 26 | oveq1d | |- ( x e. Q. -> ( x .Q ( /Q ` <. ( 2nd ` x ) , ( 1st ` x ) >. ) ) = ( ( /Q ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) .Q ( /Q ` <. ( 2nd ` x ) , ( 1st ` x ) >. ) ) ) |
| 28 | mulerpq | |- ( ( /Q ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) .Q ( /Q ` <. ( 2nd ` x ) , ( 1st ` x ) >. ) ) = ( /Q ` ( <. ( 1st ` x ) , ( 2nd ` x ) >. .pQ <. ( 2nd ` x ) , ( 1st ` x ) >. ) ) |
|
| 29 | 27 28 | eqtrdi | |- ( x e. Q. -> ( x .Q ( /Q ` <. ( 2nd ` x ) , ( 1st ` x ) >. ) ) = ( /Q ` ( <. ( 1st ` x ) , ( 2nd ` x ) >. .pQ <. ( 2nd ` x ) , ( 1st ` x ) >. ) ) ) |
| 30 | xp1st | |- ( x e. ( N. X. N. ) -> ( 1st ` x ) e. N. ) |
|
| 31 | 22 30 | syl | |- ( x e. Q. -> ( 1st ` x ) e. N. ) |
| 32 | xp2nd | |- ( x e. ( N. X. N. ) -> ( 2nd ` x ) e. N. ) |
|
| 33 | 22 32 | syl | |- ( x e. Q. -> ( 2nd ` x ) e. N. ) |
| 34 | mulpipq | |- ( ( ( ( 1st ` x ) e. N. /\ ( 2nd ` x ) e. N. ) /\ ( ( 2nd ` x ) e. N. /\ ( 1st ` x ) e. N. ) ) -> ( <. ( 1st ` x ) , ( 2nd ` x ) >. .pQ <. ( 2nd ` x ) , ( 1st ` x ) >. ) = <. ( ( 1st ` x ) .N ( 2nd ` x ) ) , ( ( 2nd ` x ) .N ( 1st ` x ) ) >. ) |
|
| 35 | 31 33 33 31 34 | syl22anc | |- ( x e. Q. -> ( <. ( 1st ` x ) , ( 2nd ` x ) >. .pQ <. ( 2nd ` x ) , ( 1st ` x ) >. ) = <. ( ( 1st ` x ) .N ( 2nd ` x ) ) , ( ( 2nd ` x ) .N ( 1st ` x ) ) >. ) |
| 36 | mulcompi | |- ( ( 2nd ` x ) .N ( 1st ` x ) ) = ( ( 1st ` x ) .N ( 2nd ` x ) ) |
|
| 37 | 36 | opeq2i | |- <. ( ( 1st ` x ) .N ( 2nd ` x ) ) , ( ( 2nd ` x ) .N ( 1st ` x ) ) >. = <. ( ( 1st ` x ) .N ( 2nd ` x ) ) , ( ( 1st ` x ) .N ( 2nd ` x ) ) >. |
| 38 | 35 37 | eqtrdi | |- ( x e. Q. -> ( <. ( 1st ` x ) , ( 2nd ` x ) >. .pQ <. ( 2nd ` x ) , ( 1st ` x ) >. ) = <. ( ( 1st ` x ) .N ( 2nd ` x ) ) , ( ( 1st ` x ) .N ( 2nd ` x ) ) >. ) |
| 39 | 38 | fveq2d | |- ( x e. Q. -> ( /Q ` ( <. ( 1st ` x ) , ( 2nd ` x ) >. .pQ <. ( 2nd ` x ) , ( 1st ` x ) >. ) ) = ( /Q ` <. ( ( 1st ` x ) .N ( 2nd ` x ) ) , ( ( 1st ` x ) .N ( 2nd ` x ) ) >. ) ) |
| 40 | mulclpi | |- ( ( ( 1st ` x ) e. N. /\ ( 2nd ` x ) e. N. ) -> ( ( 1st ` x ) .N ( 2nd ` x ) ) e. N. ) |
|
| 41 | 31 33 40 | syl2anc | |- ( x e. Q. -> ( ( 1st ` x ) .N ( 2nd ` x ) ) e. N. ) |
| 42 | 1nqenq | |- ( ( ( 1st ` x ) .N ( 2nd ` x ) ) e. N. -> 1Q ~Q <. ( ( 1st ` x ) .N ( 2nd ` x ) ) , ( ( 1st ` x ) .N ( 2nd ` x ) ) >. ) |
|
| 43 | 41 42 | syl | |- ( x e. Q. -> 1Q ~Q <. ( ( 1st ` x ) .N ( 2nd ` x ) ) , ( ( 1st ` x ) .N ( 2nd ` x ) ) >. ) |
| 44 | elpqn | |- ( 1Q e. Q. -> 1Q e. ( N. X. N. ) ) |
|
| 45 | 6 44 | ax-mp | |- 1Q e. ( N. X. N. ) |
| 46 | 41 41 | opelxpd | |- ( x e. Q. -> <. ( ( 1st ` x ) .N ( 2nd ` x ) ) , ( ( 1st ` x ) .N ( 2nd ` x ) ) >. e. ( N. X. N. ) ) |
| 47 | nqereq | |- ( ( 1Q e. ( N. X. N. ) /\ <. ( ( 1st ` x ) .N ( 2nd ` x ) ) , ( ( 1st ` x ) .N ( 2nd ` x ) ) >. e. ( N. X. N. ) ) -> ( 1Q ~Q <. ( ( 1st ` x ) .N ( 2nd ` x ) ) , ( ( 1st ` x ) .N ( 2nd ` x ) ) >. <-> ( /Q ` 1Q ) = ( /Q ` <. ( ( 1st ` x ) .N ( 2nd ` x ) ) , ( ( 1st ` x ) .N ( 2nd ` x ) ) >. ) ) ) |
|
| 48 | 45 46 47 | sylancr | |- ( x e. Q. -> ( 1Q ~Q <. ( ( 1st ` x ) .N ( 2nd ` x ) ) , ( ( 1st ` x ) .N ( 2nd ` x ) ) >. <-> ( /Q ` 1Q ) = ( /Q ` <. ( ( 1st ` x ) .N ( 2nd ` x ) ) , ( ( 1st ` x ) .N ( 2nd ` x ) ) >. ) ) ) |
| 49 | 43 48 | mpbid | |- ( x e. Q. -> ( /Q ` 1Q ) = ( /Q ` <. ( ( 1st ` x ) .N ( 2nd ` x ) ) , ( ( 1st ` x ) .N ( 2nd ` x ) ) >. ) ) |
| 50 | nqerid | |- ( 1Q e. Q. -> ( /Q ` 1Q ) = 1Q ) |
|
| 51 | 6 50 | ax-mp | |- ( /Q ` 1Q ) = 1Q |
| 52 | 49 51 | eqtr3di | |- ( x e. Q. -> ( /Q ` <. ( ( 1st ` x ) .N ( 2nd ` x ) ) , ( ( 1st ` x ) .N ( 2nd ` x ) ) >. ) = 1Q ) |
| 53 | 29 39 52 | 3eqtrd | |- ( x e. Q. -> ( x .Q ( /Q ` <. ( 2nd ` x ) , ( 1st ` x ) >. ) ) = 1Q ) |
| 54 | fvex | |- ( /Q ` <. ( 2nd ` x ) , ( 1st ` x ) >. ) e. _V |
|
| 55 | oveq2 | |- ( y = ( /Q ` <. ( 2nd ` x ) , ( 1st ` x ) >. ) -> ( x .Q y ) = ( x .Q ( /Q ` <. ( 2nd ` x ) , ( 1st ` x ) >. ) ) ) |
|
| 56 | 55 | eqeq1d | |- ( y = ( /Q ` <. ( 2nd ` x ) , ( 1st ` x ) >. ) -> ( ( x .Q y ) = 1Q <-> ( x .Q ( /Q ` <. ( 2nd ` x ) , ( 1st ` x ) >. ) ) = 1Q ) ) |
| 57 | 54 56 | spcev | |- ( ( x .Q ( /Q ` <. ( 2nd ` x ) , ( 1st ` x ) >. ) ) = 1Q -> E. y ( x .Q y ) = 1Q ) |
| 58 | 53 57 | syl | |- ( x e. Q. -> E. y ( x .Q y ) = 1Q ) |
| 59 | mulcomnq | |- ( r .Q s ) = ( s .Q r ) |
|
| 60 | mulassnq | |- ( ( r .Q s ) .Q t ) = ( r .Q ( s .Q t ) ) |
|
| 61 | mulidnq | |- ( r e. Q. -> ( r .Q 1Q ) = r ) |
|
| 62 | 6 9 10 59 60 61 | caovmo | |- E* y ( x .Q y ) = 1Q |
| 63 | df-eu | |- ( E! y ( x .Q y ) = 1Q <-> ( E. y ( x .Q y ) = 1Q /\ E* y ( x .Q y ) = 1Q ) ) |
|
| 64 | 58 62 63 | sylanblrc | |- ( x e. Q. -> E! y ( x .Q y ) = 1Q ) |
| 65 | cnvimass | |- ( `' .Q " { 1Q } ) C_ dom .Q |
|
| 66 | df-rq | |- *Q = ( `' .Q " { 1Q } ) |
|
| 67 | 9 | eqcomi | |- ( Q. X. Q. ) = dom .Q |
| 68 | 65 66 67 | 3sstr4i | |- *Q C_ ( Q. X. Q. ) |
| 69 | relxp | |- Rel ( Q. X. Q. ) |
|
| 70 | relss | |- ( *Q C_ ( Q. X. Q. ) -> ( Rel ( Q. X. Q. ) -> Rel *Q ) ) |
|
| 71 | 68 69 70 | mp2 | |- Rel *Q |
| 72 | 66 | eleq2i | |- ( <. x , y >. e. *Q <-> <. x , y >. e. ( `' .Q " { 1Q } ) ) |
| 73 | ffn | |- ( .Q : ( Q. X. Q. ) --> Q. -> .Q Fn ( Q. X. Q. ) ) |
|
| 74 | fniniseg | |- ( .Q Fn ( Q. X. Q. ) -> ( <. x , y >. e. ( `' .Q " { 1Q } ) <-> ( <. x , y >. e. ( Q. X. Q. ) /\ ( .Q ` <. x , y >. ) = 1Q ) ) ) |
|
| 75 | 8 73 74 | mp2b | |- ( <. x , y >. e. ( `' .Q " { 1Q } ) <-> ( <. x , y >. e. ( Q. X. Q. ) /\ ( .Q ` <. x , y >. ) = 1Q ) ) |
| 76 | ancom | |- ( ( <. x , y >. e. ( Q. X. Q. ) /\ ( .Q ` <. x , y >. ) = 1Q ) <-> ( ( .Q ` <. x , y >. ) = 1Q /\ <. x , y >. e. ( Q. X. Q. ) ) ) |
|
| 77 | ancom | |- ( ( x e. Q. /\ ( x .Q y ) = 1Q ) <-> ( ( x .Q y ) = 1Q /\ x e. Q. ) ) |
|
| 78 | eleq1 | |- ( ( x .Q y ) = 1Q -> ( ( x .Q y ) e. Q. <-> 1Q e. Q. ) ) |
|
| 79 | 6 78 | mpbiri | |- ( ( x .Q y ) = 1Q -> ( x .Q y ) e. Q. ) |
| 80 | 9 10 | ndmovrcl | |- ( ( x .Q y ) e. Q. -> ( x e. Q. /\ y e. Q. ) ) |
| 81 | 79 80 | syl | |- ( ( x .Q y ) = 1Q -> ( x e. Q. /\ y e. Q. ) ) |
| 82 | opelxpi | |- ( ( x e. Q. /\ y e. Q. ) -> <. x , y >. e. ( Q. X. Q. ) ) |
|
| 83 | 81 82 | syl | |- ( ( x .Q y ) = 1Q -> <. x , y >. e. ( Q. X. Q. ) ) |
| 84 | 81 | simpld | |- ( ( x .Q y ) = 1Q -> x e. Q. ) |
| 85 | 83 84 | 2thd | |- ( ( x .Q y ) = 1Q -> ( <. x , y >. e. ( Q. X. Q. ) <-> x e. Q. ) ) |
| 86 | 85 | pm5.32i | |- ( ( ( x .Q y ) = 1Q /\ <. x , y >. e. ( Q. X. Q. ) ) <-> ( ( x .Q y ) = 1Q /\ x e. Q. ) ) |
| 87 | df-ov | |- ( x .Q y ) = ( .Q ` <. x , y >. ) |
|
| 88 | 87 | eqeq1i | |- ( ( x .Q y ) = 1Q <-> ( .Q ` <. x , y >. ) = 1Q ) |
| 89 | 88 | anbi1i | |- ( ( ( x .Q y ) = 1Q /\ <. x , y >. e. ( Q. X. Q. ) ) <-> ( ( .Q ` <. x , y >. ) = 1Q /\ <. x , y >. e. ( Q. X. Q. ) ) ) |
| 90 | 77 86 89 | 3bitr2ri | |- ( ( ( .Q ` <. x , y >. ) = 1Q /\ <. x , y >. e. ( Q. X. Q. ) ) <-> ( x e. Q. /\ ( x .Q y ) = 1Q ) ) |
| 91 | 76 90 | bitri | |- ( ( <. x , y >. e. ( Q. X. Q. ) /\ ( .Q ` <. x , y >. ) = 1Q ) <-> ( x e. Q. /\ ( x .Q y ) = 1Q ) ) |
| 92 | 72 75 91 | 3bitri | |- ( <. x , y >. e. *Q <-> ( x e. Q. /\ ( x .Q y ) = 1Q ) ) |
| 93 | 92 | a1i | |- ( T. -> ( <. x , y >. e. *Q <-> ( x e. Q. /\ ( x .Q y ) = 1Q ) ) ) |
| 94 | 71 93 | opabbi2dv | |- ( T. -> *Q = { <. x , y >. | ( x e. Q. /\ ( x .Q y ) = 1Q ) } ) |
| 95 | 94 | mptru | |- *Q = { <. x , y >. | ( x e. Q. /\ ( x .Q y ) = 1Q ) } |
| 96 | 17 19 64 95 | fvopab3g | |- ( ( A e. Q. /\ B e. _V ) -> ( ( *Q ` A ) = B <-> ( A .Q B ) = 1Q ) ) |
| 97 | 96 | ex | |- ( A e. Q. -> ( B e. _V -> ( ( *Q ` A ) = B <-> ( A .Q B ) = 1Q ) ) ) |
| 98 | 4 15 97 | pm5.21ndd | |- ( A e. Q. -> ( ( *Q ` A ) = B <-> ( A .Q B ) = 1Q ) ) |