This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lidlcl.u | |- U = ( LIdeal ` R ) |
|
| Assertion | lidlsubg | |- ( ( R e. Ring /\ I e. U ) -> I e. ( SubGrp ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlcl.u | |- U = ( LIdeal ` R ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | 2 1 | lidlss | |- ( I e. U -> I C_ ( Base ` R ) ) |
| 4 | 3 | adantl | |- ( ( R e. Ring /\ I e. U ) -> I C_ ( Base ` R ) ) |
| 5 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 6 | 1 5 | lidl0cl | |- ( ( R e. Ring /\ I e. U ) -> ( 0g ` R ) e. I ) |
| 7 | 6 | ne0d | |- ( ( R e. Ring /\ I e. U ) -> I =/= (/) ) |
| 8 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 9 | 1 8 | lidlacl | |- ( ( ( R e. Ring /\ I e. U ) /\ ( x e. I /\ y e. I ) ) -> ( x ( +g ` R ) y ) e. I ) |
| 10 | 9 | anassrs | |- ( ( ( ( R e. Ring /\ I e. U ) /\ x e. I ) /\ y e. I ) -> ( x ( +g ` R ) y ) e. I ) |
| 11 | 10 | ralrimiva | |- ( ( ( R e. Ring /\ I e. U ) /\ x e. I ) -> A. y e. I ( x ( +g ` R ) y ) e. I ) |
| 12 | eqid | |- ( invg ` R ) = ( invg ` R ) |
|
| 13 | 1 12 | lidlnegcl | |- ( ( R e. Ring /\ I e. U /\ x e. I ) -> ( ( invg ` R ) ` x ) e. I ) |
| 14 | 13 | 3expa | |- ( ( ( R e. Ring /\ I e. U ) /\ x e. I ) -> ( ( invg ` R ) ` x ) e. I ) |
| 15 | 11 14 | jca | |- ( ( ( R e. Ring /\ I e. U ) /\ x e. I ) -> ( A. y e. I ( x ( +g ` R ) y ) e. I /\ ( ( invg ` R ) ` x ) e. I ) ) |
| 16 | 15 | ralrimiva | |- ( ( R e. Ring /\ I e. U ) -> A. x e. I ( A. y e. I ( x ( +g ` R ) y ) e. I /\ ( ( invg ` R ) ` x ) e. I ) ) |
| 17 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 18 | 17 | adantr | |- ( ( R e. Ring /\ I e. U ) -> R e. Grp ) |
| 19 | 2 8 12 | issubg2 | |- ( R e. Grp -> ( I e. ( SubGrp ` R ) <-> ( I C_ ( Base ` R ) /\ I =/= (/) /\ A. x e. I ( A. y e. I ( x ( +g ` R ) y ) e. I /\ ( ( invg ` R ) ` x ) e. I ) ) ) ) |
| 20 | 18 19 | syl | |- ( ( R e. Ring /\ I e. U ) -> ( I e. ( SubGrp ` R ) <-> ( I C_ ( Base ` R ) /\ I =/= (/) /\ A. x e. I ( A. y e. I ( x ( +g ` R ) y ) e. I /\ ( ( invg ` R ) ` x ) e. I ) ) ) ) |
| 21 | 4 7 16 20 | mpbir3and | |- ( ( R e. Ring /\ I e. U ) -> I e. ( SubGrp ` R ) ) |